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Abstract. In this paper, the third model of four (3+1)-dimensional nonlinear evolution
equations, generated by the Jaulent-Miodek hierarchy, is investigated by the bifurca-
tion method of planar dynamical systems. The 2-parameters different bifurcation re-
gions are obtained. According to the different phase portraits in 2-parameters different
bifurcation regions, we obtain kink (anti-kink) wave solutions, solitary wave solutions
and periodic wave solutions for the third of these models in the different subsets of
4-parameters space by dynamical system method. Furthermore, the explicit exact ex-
pressions of these bounded traveling waves are obtained. All these wave solutions are
characterized by distinct physical structures.
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1 Introduction
Nonlinear partial differential equations are very wildly used in many fields such as
physics, engineering, mechanics, biology, chemistry economic and so on. The travel-

ing wave solutions of nonlinear wave equations play a major role in the study of the
propagation of waves and the structures of the obtained wave solutions.
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Four (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierar-
chy [1-4] are extended in [5], which are
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It is obvious that these (3+1)-dimensional nonlinear models (1) are developed by adding
aaglwzz, and — %aglwzz — %wz — %wy to the (2+1)-dimensional nonlinear models [1]. The
system(1) is completely integrable evolution equations. There are many methods to be
used in travel wave soutions of nonlinear evolution equations, such as the inverse scat-
tering method, the Bicklund transformation method, algebraic-geometric method, the
Darboux transformation method, multiple exp-function method [6], the Hirota bilin-
ear method [1-3,5,7-9] and dynamical systems method [4, 10-12]. The Hirota bilinear
method is used to formally derive the multiple kink solutions and multiple singular kink
solutions of the (24 1)-dimensional nonlinear models [1], and multiple soliton solutions
for the system (1) [5]. By the bifurcation method of the dynamical systems, some new
exact solutions of the (2+1)-dimensional nonlinear models are obtained in [4]. In this
paper, we will study the third model given
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by the method of dynamical systems.
Using the potential

w(x,y,t) =uyx(x,y,t) (1.4)

to remove the integral term in (1.3), the system (1.3) becomes
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We are interesting in the wave solutions of (1.5) in this paper. Let u(x,y,z,t) =¥ (kx+
ry+z—ct) ="¥({), where c is propagating wave velocity. According to physical meaning



