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Abstract. In this paper, the third model of four (3+1)-dimensional nonlinear evolution
equations, generated by the Jaulent-Miodek hierarchy, is investigated by the bifurca-
tion method of planar dynamical systems. The 2-parameters different bifurcation re-
gions are obtained. According to the different phase portraits in 2-parameters different
bifurcation regions, we obtain kink (anti-kink) wave solutions, solitary wave solutions
and periodic wave solutions for the third of these models in the different subsets of
4-parameters space by dynamical system method. Furthermore, the explicit exact ex-
pressions of these bounded traveling waves are obtained. All these wave solutions are
characterized by distinct physical structures.
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1 Introduction

Nonlinear partial differential equations are very wildly used in many fields such as

physics, engineering, mechanics, biology, chemistry economic and so on. The travel-

ing wave solutions of nonlinear wave equations play a major role in the study of the

propagation of waves and the structures of the obtained wave solutions.
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Four (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierar-

chy [1–4] are extended in [5], which are
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where α is a constant,∂−1
x is the inverse of ∂x with ∂x∂−1
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It is obvious that these (3+1)-dimensional nonlinear models (1) are developed by adding
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2 wy to the (2+1)-dimensional nonlinear models [1]. The

system(1) is completely integrable evolution equations. There are many methods to be

used in travel wave soutions of nonlinear evolution equations, such as the inverse scat-

tering method, the Bäcklund transformation method, algebraic-geometric method, the

Darboux transformation method, multiple exp-function method [6], the Hirota bilin-

ear method [1–3, 5, 7–9] and dynamical systems method [4, 10–12]. The Hirota bilinear

method is used to formally derive the multiple kink solutions and multiple singular kink

solutions of the (2+1)-dimensional nonlinear models [1], and multiple soliton solutions

for the system (1) [5]. By the bifurcation method of the dynamical systems, some new

exact solutions of the (2+1)-dimensional nonlinear models are obtained in [4]. In this

paper, we will study the third model given
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by the method of dynamical systems.

Using the potential

w(x,y,t)=ux(x,y,t) (1.4)

to remove the integral term in (1.3), the system (1.3) becomes
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We are interesting in the wave solutions of (1.5) in this paper. Let u(x,y,z,t)=Ψ(kx+
ry+z−ct)=Ψ(ξ), where c is propagating wave velocity. According to physical meaning


