
Numer. Math. Theor. Meth. Appl. Vol. 12, No. 2, pp. 453-466

doi: 10.4208/nmtma.OA-2017-0145 May 2019

On Generalizations of p-Sets and their Applications

Heng Zhou1,∗and Zhiqiang Xu2,3

1 School of Sciences, Tianjin Polytechnic University, Tianjin 300160, China
2 LSEC, Institute of Computational Mathematics, Academy of Mathematics and

System Sciences, Chinese Academy of Sciences, Beijing 100190, China
3 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

Received 24 November 2017; Accepted (in revised version) 27 March 2018

Abstract. The p-set, which is in a simple analytic form, is well distributed in unit cubes.

The well-known Weil’s exponential sum theorem presents an upper bound of the expo-

nential sum over the p-set. Based on the result, one shows that the p-set performs well

in numerical integration, in compressed sensing as well as in uncertainty quantification.

However, p-set is somewhat rigid since the cardinality of the p-set is a prime p and the

set only depends on the prime number p. The purpose of this paper is to present gener-

alizations of p-sets, say P a,ε

d,p
, which is more flexible. Particularly, when a prime number

p is given, we have many different choices of the new p-sets. Under the assumption that

Goldbach conjecture holds, for any even number m, we present a point set, say Lp,q,

with cardinality m−1 by combining two different new p-sets, which overcomes a major

bottleneck of the p-set. We also present the upper bounds of the exponential sums over

P a,ε

d,p
and Lp,q, which imply these sets have many potential applications.
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1. Introduction

1.1. p-set

Let p be a prime number. We consider the point set

Pd,p =
¦

x0, · · · ,xp−1

©

⊂ [0,1)d ,

where

x j =
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∈ [0,1)d , j ∈ Zp,
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Zp :=
�

0,1, · · · , p− 1
	

and {x} is the fractional part of x for a nonnegative real number

x . The point set Pd,p is called p-set and was introduced by Korobov [4] and Hua-Wang

[3]. In [1], Dick introduced the development of p-set in detail. Recently, p-set attracts

much attention since its advantage in numerical integration [1], in the recovery of sparse

trigonometric polynomials [10] and in the uncertainty quantification [11]. Particularly,

the p-set has good performance in terms of the dimension d . In [1], Dick presents a

numerical integration formula based on Pd,p with showing the error bound of the formula

depends only polynomially on the dimension d . In [10], Xu uses Pd,p to construct the

deterministic sampling points of sparse trigonometric polynomials and shows the sampling

matrix corresponding to Pd,p has the almost optimal coherence. And hence, Pd,p has a

good performance for the recovery of sparse trigonometric polynomials.

1.2. Generalizations of p-set: P a,ε

d,p
and Lp,q

The p-set is in a simple analytic form and hence it is easy to be generated by computer.

However, the p-set is somewhat rigid with the point set only depending on a prime number

p. If the function values at some points in p-set are not easy to be obtained, one has to

change the prime number p to obtain a new point set which has the different cardinality

with the previous one. Hence, in practical application, it will be better that one can choose

the different point sets which have the similar property with Pd,p. We next introduce a

generalization of p-set.

Let

Zd
p :=

¦

a= (a1, · · · , ad) : a j ∈ Zp, j = 1, · · · , d
©

.

Suppose that a= (a1, · · · , ad) ∈ Zd
p and ε = (ε1, · · · ,εd−1) ∈ {0,1}d−1. We set

P a,ε
d,p

:=
n

x
a,ε
j

: j ∈ Zp

o

, (1.1)

where

x
a,ε
j
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jh+ ad jd

p

)!

∈ [0,1)d ,

and a′
k
= εkak, k = 1, · · · , d − 1. We call P a,ε

d,p
as the p-set associating with the parameter

a and ε. If we take a = (1, · · · , 1) and ε = (0, · · · , 0), then P a,ε

d,p
is reduced to the classical

p-set.

The p-set P a,ε

d,p
associating with the parameters a,ε is more flexible. Given the prime

number p, one can generate various point sets by changing the parameters a and ε with

presenting an option set when the cardinality p is given.

Note that the cardinality of both P a,ε
d,p

and Pd,p is prime. Since the distance between

adjacent prime can be very large, the cardinality of p-set does not change “smoothly".

Using the set P a,ε

d,p
, we next present a set with the cardinality being odd number. Suppose

that m ∈ 2Z is given. The Goldbach conjecture, which is one of the best-known unsolved


