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Abstract. This paper studies image decomposition models which involve functional re-
lated to total variation and Euler’s elastica energy. Such kind of variational models
with first order and higher order derivatives have been widely used in image processing
to accomplish advanced tasks. However, these non-linear partial differential equations
usually take high computational cost by the gradient descent method. In this paper,
we propose a proximal alternating direction method of multipliers (ADMM) for total
variation (TV) based Vese-Osher’s decomposition model [L. A. Vese and S. J. Osher,
J. Sci. Comput., 19.1 (2003), pp. 553-572] and its extension with Euler’s elastica regu-
larization. We demonstrate that efficient and effective solutions to these minimization
problems can be obtained by proximal based numerical algorithms. In numerical ex-
periments, we present numerous results on image decomposition and image denoising,
which conforms significant improvement of the proposed models over standard models.
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1. Introduction

Assume that Ω ⊂ R2 is a bounded, open, and connected subset (usually a rectangle in
image processing). The image decomposition task is to decompose a given image f : Ω→
R as the sum of two components

f = u+ v,

where u is geometric part or cartoon component, and v is an oscillating one. In general,
u models homogeneous regions with sharp boundaries and v contains oscillating patterns
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such as texture and noise; See, e.g. [3,15,25,26,34,39,44,45]. The origins of these ideas
are the remarkable book by Meyer [34], in which the author showed that the well-known
Rudin-Osher-Fatemi (ROF) model [37] does not always represent texture or oscillatory
details well.

An eligible and successful choice to detect textures is the generalized functions space
G = G(Ω) [3,30,34,46], where

G(Ω) =
¦

v =∇ · g= ∂x g1+ ∂y g2 : g= (g1, g2), g1, g2 ∈ L∞(Ω,R2)
©

endowed with the norm

|v|G = inf
n

‖|g|‖L∞(Ω,R2) : v =∇·g, g= (g1, g2), g1, g2 ∈ L∞(Ω,R2), |g|=
Æ

g2
1 + g2

2

o

.

The (BV, G) model proposed by Meyer in [34] is to solve the problem

inf
(u,v)∈BV (Ω)×G(Ω)

¨
∫

Ω

|u|BV + β |v|G , f = u+ v

«

,

where BV (Ω) is the bounded variation functions space.
There is no standard calculation of the associated Euler-Lagrange equation due to the

term coming from an L∞-norm (in the G-norm), which maps a series of work out to over-
come this difficulty; See, e.g., [2,4,45,46].

In [45, 46], Vese and Osher proposed to model oscillatory components v as first or-
der derivatives of vector fields in Lp, (1 ≤ p < ∞) (approaching to the L∞-norm) to
approximate Meyer’s (BV, G) model. As the first practical image decomposition model,
total variation (TV) based Vese-Osher’s decomposition model solves the following convex
minimization problem

min
u,g
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, (1.1)

where α, β > 0, are tuning parameters, v = ∇ · g, g = (g1, g2)T and 1 ≤ ρ < ∞. The
model (1.1) was solved by sequential descent approach to its Euler-Lagrange equation. It
has been shown that the advantage of the model (1.1) is that it is not sensitive to the choice
of ρ. The authors recommended to set ρ = 1 to yield faster calculations per iteration [45].
In fact if we generate the model (1.1) to the case ρ = ∞, then we can easily handle the
L∞-norm in the discrete setting by the ADMM method proposed in this paper.

In [12], the authors showed that TV regularization suffers from the undesirable s-
taircase effect for image denoising application, which also exists in image decomposition
problems. To overcome this, high order models have been proposed [13, 32, 49]. Euler’s
elastica is one of the higher order energy functionals, which has a number of interesting
applications in elasticity, computer graphics and in image processing. To improve the qual-
ity of an image in the sense of cartoon u and texture v and improve other applications like


