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ANALYSIS OF POLLUTION-FREE APPROACHES FOR

MULTI-DIMENSIONAL HELMHOLTZ EQUATIONS

KUN WANG∗, YAU SHU WONG, AND JIZU HUANG

Abstract. Motivated by our recent work about pollution-free difference schemes for solving
Helmholtz equation with high wave numbers, this paper presents an analysis of error estimate for

the numerical solution on the annulus and hollow sphere domains. By applying the weighted-test-
function method and defining two special interpolation operators, we first derive the existence,
uniqueness, stability and the pollution-free error estimate for the one-dimensional problems gen-
erated from a method based on separation of variables. Utilizing the spherical harmonics and

approximations results, we then prove the pollution-free error estimate in L2-norm for multi-
dimensional Helmholtz problems.
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1. Introduction

This paper is focused on the Helmholtz equation defined as follows:

−∆ũ− k2ũ = 0, in Rd\B1,(1)

(∂rũ+ jkũ)|∂B1 = g̃1,(2)

∂rũ− jkũ = o
(
||x||

1−d
2

)
, as ||x|| → ∞,(3)

where k is the wave number, B1 is a bounded domain in Rd, x = (x1, · · · , xd) (d =
1, 2, 3), g̃1 is a given function, ∂r denotes the radial derivative and j2 = −1.
Applying an absorbing boundary condition method, or the perfectly matched layers
(PML) method, the problem (1)-(3) may be reduced to the following equation (see
[7, 15, 16, 23, 26, 43, 44, 57]):

−∆ũ− k2ũ = 0, in Ω := B2\B1,(4)

(∂rũ+ jkũ)|∂B1 = g̃1,(5)

(∂rũ− jkũ)|∂B2 = g̃2,(6)

where B2 ∈ Rd (d = 1, 2, 3) is a sufficiently large ball containing B1 and g̃2 is a
given function.

It is well-known that solving the Helmholtz equation with high wave number-
s numerically is very difficult and challenging due to the high oscillation solu-
tions. Moreover, the resulted linear system is indefinite and ill-conditioned (see
[1, 12, 13, 14, 22, 28, 29, 30, 31, 32, 33, 34, 50]). Another difficulty is that the
“pollution effect” exists in almost all computational schemes applied to multi-
dimensional Helmholtz equation such that the accuracy of the numerical solution
becomes totally unacceptable for the cases with high wave numbers unless very
fine meshes are used in the computation. In the past several decades, many stud-
ies have been reported to eliminate or reduce the “pollution effect”. For example,
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Babus̆ka et al. [4, 47] considered the generalized finite element method to mini-
mize the “pollution effect”. Another popular technique is based on the h-p finite
element method (see [19, 32, 33, 54]), in which the “pollution effect” is reduced
by increasing the order of the polynomial basis function or decreasing the mesh
size h. For the finite difference methods, many higher order compact schemes were
developed [21, 42, 45, 46, 49]. Recently, Chen et al. [15, 16] proposed two methods,
in which the numerical dispersion is minimized by choosing optimal parameters.
Other computational techniques based on the spectral methods were investigated,
and the reader is referred to [6, 8, 17, 20, 27, 37, 39, 43, 44, 59]. However, it is
important to note that although pollution-free numerical schemes have been re-
ported in [24, 52, 53], there does not exist any analysis results about pollution-free
methods for solving the multi-dimensional problems.

To ensure the bound of the relative error for the numerical solution of the problem
(4)-(6), it is usually necessary to impose the following condition

kβ(kh)γ = constant.(7)

Here, h denotes the mesh size, and two constants β > 0, γ > 0 are real numbers. For
example, β =2, and γ =2 and 4, when the solution is computed by the standard
central finite difference scheme and the compact fourth order difference scheme,
respectively. Considering that the Helmholtz problem is numerically solved with a
fixed value of kh, and due to the relation given in (7), the numerical error will not
decrease even when the mesh size is reduced. This adverse behaviour is the direct
consequence of the “pollution effect”, and more detailed discussion is reported in
[31]. It has been cited by Babus̆ka and Sauter [5] that the “pollution effect” can
not be avoided on a general bounded domain for the finite element approximation
of two- (2D) and three-dimensional (3D) Helmholtz equations.

In this study, we focus on the pollution-free difference method. It should be
noted that the standard finite difference and the higher order compact methods are
constructed based on a truncated Taylor series expansion, and the truncation errors
depend on the wave numbers and thus causing the “pollution effect” unavoidable.
To eliminate the pollution, pollution-free difference schemes for the one-dimensional
Helmholtz equation have been proposed in [25, 36, 50, 53, 56], in which the deriva-
tion takes account of all terms in the Taylor series expansion. Compared with the
standard finite difference methods, the numerical error of the pollution-free scheme
depends only on the mesh size h but independent of the wave number k. Therefore,
the numerical error is decreasing as the mesh size is reduced [50, 56]. Consequent-
ly, the condition (7) can be relaxed to the common “rule of thumb” (i.e., 8 to 10
discrete mesh points for each wavelength), that is

kh = C1 ≤ π

4
.(8)

Compared to (7), relatively large value of kh could be employed even when the
wave number is very high. Numerical simulations reported in [52] also verify that
the pollution-free difference scheme can produce a stable numerical solution even
when kh > 1. According to the condition (7), the mesh size of the standard finite
difference or compact difference schemes must satisfy the condition

kh ≪ 1,(9)

for problems with high wave numbers. Therefore, a pollution-free scheme is much
more efficient than the standard and compact finite difference schemes. A detailed
development for 1D problems has been reported in [50, 56]. However, this approach
can not be extended directly to problems on a general domain in 2D and 3D.


