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Abstract

This paper develops a class of general one-step discretization methods for solving the

index-1 stochastic delay differential-algebraic equations. The existence and uniqueness

theorem of strong solutions of index-1 equations is given. A strong convergence criterion

of the methods is derived, which is applicable to a series of one-step stochastic numerical

methods. Some specific numerical methods, such as the Euler-Maruyama method, stochas-

tic θ-methods, split-step θ-methods are proposed, and their strong convergence results are

given. Numerical experiments further illustrate the theoretical results.
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1. Introduction

Differential algebraic equations (DAEs) are often used to model some actual problems in

science and technology, such as automatic control, electric circuits, multibody dynamics, com-

puter aid design and so on. The numerical algorithms and their analysis play the key roles in

the research of this kind of equations, and the related work refers to the monographs of Ascher

& Petzold and Hairer & Wanner (cf. [3, 6]). Sometimes, however, the actual problems could

be influenced on delay factor or stochastic perturbation (cf. [11, 25]). Hence, it is necessary to

consider these impacts when one establishes a real model of DAEs. In this way, when a delay

argument is presented, DAEs can be classed into the deterministic delay differential algebraic

equations (DDDAEs) and stochastic delay differential-algebraic equations (SDDAEs).

A few methods have been proposed to solve DDDAEs numerically. For instance, Ascher

and Petzold [2] studied retarded and neutral equations and presented a series of convergence

results for linear multistep and Runge-Kutta methods. Hauber [7] analyzed convergence of

the collocation methods for DDDAEs with state-dependent delay. Luzyanina and Roose [10]

investigated the periodic solutions of semi-explicit DDDAEs and their collocation methods. Zhu

and Petzold [26] presented some analytical and numerical stability criteria of Hessenberg-type

DDDAEs, where multistep methods and Runge-Kutta methods were concerned. Moreover, the

stability properties of numerical methods applied to delay differential equations without the

algebraic restriction also refer to the paper [19, 23, 24] and the references therein.
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For stochastic differential algebraic equations without delay (SDAEs), some research results

have been presented. For example, Schein and Denk applied a two-step scheme to solve linear

implicit SDAEs with additive noise in [16]. Penski [15] developed a numerical method with

strong order one to compute a circuit simulation model of SDAEs and analyzed the method’s

mean-square stability. In [8,9], the authors proposed a class of stiffly accurate stochastic Runge-

Kutta methods for nonlinear index-1 SDAEs with scalar noise and investigated their mean-

square stability. Furthermore, some closely related works can be seen in the papers [1, 17, 20].

Compared with the studies for DDDAEs and SDAEs, the research on numerical methods for

SDDAEs is still in their infancy. To our knowledge, for index-1 SDDAEs, Xiao and Zhang [21,22]

derived some existence and uniqueness results and the Euler-Maruyama methods. Whereas,

most of the existing stochastic numerical methods are only for stochastic delay differential

equations (SDDEs) or stochastic differential equations (SDEs) without algebraic constrain, see,

e.g., [4, 5, 12–14,18] and their references.

In this paper, we will deal with the index-1 SDDAEs with delay τ > 0:

dx(t) = f(t, x(t), x(t− τ), y(t), y(t − τ))dt

+ g(t, x(t), x(t − τ), y(t), y(t− τ))dW (t), t ∈ [t0, T ], (1.1a)

0 = u(t, x(t), x(t − τ), y(t)), t ∈ [t0, T ], (1.1b)

whose initial values x(t) = a(t) and y(t) = b(t) for t ≤ t0. The paper is organized as follows. In

section 2, we make some basic definitions, and investigate existence and uniqueness of the strong

solutions of SDDAEs (1.1). In section 3, we develop a class of general one-step discretization

methods for solving SDDAEs (1.1) and derive the methods’ strong convergence criteria. In

section 4, some specific numerical methods are proposed for SDDAEs and SDAEs, such as

the Euler-Maruyama method, stochastic θ-methods and split-step θ-methods. We apply the

obtained results to specific numerical methods and hence some new convergence results of the

methods are given. Connection and comparison between the obtained results and the existed

ones are given. Finally, with several numerical experiments, we further illustrate the theoretical

results.

2. Existence and Uniqueness of Strong Solutions of Index-1 SDDAEs

To give a clear statement to the index-1 SDDAEs, we first introduce some notations. Let

(Ω,A , P ) denote a complete probability space with a right-continuous filtration {At}t≥0, in

which each At (t ≥ 0) contains all P-null sets in A , and W (t) = (W1(t), . . . ,Wd(t))
T be the

d-dimensional standard Wiener process defined on space (Ω,A , P ). Throughout the paper, | · |

denotes the Euclid norm for a vector and the trace norm for a matrix. For an integrable random

variable ξ, we define

E(ξ) :=

∫

Ω

ξdP, Et(ξ) := E(ξ|At), ‖ξ‖Lp := (E|ξ|p)
1
p .

Moreover, C(J ;Rd) is the Banach space consisting of all continuous Rd-valued functions ϕ

defined on J with the norm ‖ϕ‖ = supt≤t0 |ϕ(t)|, Lp(J ;Rd) the family of Rd-valued Ft-

adapted processes {f(t)}t∈J such that
∫ b

a
|f(t)|pdt < ∞ holds almost surely (a.s. for short),

and Mp(J ;Rd) the family of processes {f(t)}t∈J in Lp(J ;Rd) such that E
∫ b

a |f(t)|pdt <∞.


