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Abstract. In this paper, a novel second-order two-scale (SOTS) analysis method and corre-
sponding numerical algorithm is developed for dynamic thermo-mechanical problems of composite
structures with cylindrical periodicity. The formal SOTS solutions are successfully constructed by
the multiscale asymptotic analysis. Then we theoretically explain the necessity of developing the
SOTS solutions by the error analysis in the pointwise sense. Futhermore, the convergence result
with an explicit rate for the SOTS solutions is obtained. In addition, a SOTS numerical algorith-
m is presented to effectively solve these multiscale problems. Finally, some numerical examples
verify the feasibility and validity of the SOTS numerical algorithm we proposed. This study offers
a unified multiscale framework that enables the simulation and analysis of thermo-mechanical
coupled behavior of composite structures with cylindrical periodicity.
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1. Introduction

In the past decades, composite materials have been widely used in engineering
applications owing to their attractive physical and mechanical properties. With the
appearance of various complex and extreme environments, composite materials usu-
ally served under multi-physics coupled circumstances, such as electro-mechanical,
thermo-electrical, thermo-mechanical and magneto-electro-thermo-elastic, etc. Due
to a great application prospect, the thermo-mechanical performances of composite
materials have been a research hotspot of scientists and engineers. To the best of
our knowledge, some studies have performed on dynamic thermo-mechanical prob-
lems of composites. However, most of these studies focused on one-way thermo-
mechanical coupled problems [1–5], namely only the thermal effects affect the me-
chanical field. Besides, some researchers devoted to the two-way thermo-mechanical
coupled problems which are fully coupled hyperbolic and parabolic systems, but
their researches were based on the cartesian coordinate system [6–10]. To the best
of our knowledge, the structures made of the composites with cylindrical peri-
odic configurations have a great application value in practical engineering, such
as composite shells, composite cylinder, composite tube, etc. In recent years,
some research results for composite structures with cylindrical periodicity have
appeared [5, 11–15]. However, up to now there is a lack of adequate research on
dynamic thermo-mechanical problems of composite structures with cylindrical pe-
riodicity.

The subject of this paper is to develop a SOTS analysis method and associ-
ated numerical algorithm for dynamic thermo-mechanical problems of composite
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structures with cylindrical periodicity. In such cases, the direct numerical compu-
tation of these multiscale problems needs a tremendous amount of computational
resources to capture the micro-scale behaviors due to large heterogeneities (caused
by inclusions or holes) in composite structures. Furthermore, the stability of nu-
merical scheme for these coupled systems with cylindrical periodic configurations
is also a difficult problem to handle. From the point of view of theoretical analy-
sis, the error estimate of SOTS solutions with an explicit convergence rate is hard
to gain due to lack of a prior estimate for wave equations with nonhomogeneous
boundary condition. In order to deal with these difficulties, we develop a SOT-
S method to overcome numerical difficulties based on asymptotic homogenization
method (AHM), finite element method (FEM) and finite difference method (FDM).
On the other hand, we impose the homogeneous Dirichlet condition on auxiliary
cell problems. At this case, the explicit convergence rate of SOTS solutions is eas-
ily obtained because the SOTS solutions will satisfy automatically the boundary
condition of governing equations under some assumptions.

This paper is organized as follows. In Sections 2, the detailed construction of the
SOTS solutions for dynamic thermo-mechanical problems of composite structures
with cylindrical periodicity is given by multiscale asymptotic analysis. Moreover,
the error analysis in the pointwise sense of first-order two-scale (FOTS) solutions
and SOTS solutions is obtained, respectively. Through the above analysis, we
theoretically explain the importance of developing the SOTS solutions in capturing
micro-scale information. In Section 3, an explicit convergence rate for the SOTS
solutions are derived under some hypotheses. In Section 4, a SOTS numerical
algorithm based on FEM and FDM is presented to solve these multiscale problems
effectively. In Section 5, some numerical results are given to verify the feasibility
and validity of our SOTS algorithm. Finally, some conclusions are given in Section
6.

For convenience, we use the Einstein summation convention on repeated indices
in this paper. Besides, the notation δij is the Kronecker symbol, and if i = j,
δij = 1, or δij = 0.

2. The multiscale asymptotic analysis of governing equations

Consider governing equations for dynamic thermo-mechanical problems of com-
posite structures with cylindrical periodicity as follows
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where Ω is a bounded convex domain (0 < r <∞) in R
3 with a boundary ∂Ω; The

uεr, u
ε
θ, u

ε
z and T ε in (1) are undetermined displacement and temperature fields;

û(x, t), T̂ (x, t) and u1(x) are known functions with macro-coordinates x = (r, θ, z);
ε represents the characteristic periodic unit cell size; ρε and cε are the mass density


