Inequalities Concerning The Maximum Modulus of Polynomials

B. A. Zargar*, A. W. Manzoor and Shaista Bashir
Department of Mathematics, University of Kashmir, Srinagar-190006, India

Received 27 July 2017; Accepted (in revised version) 15 December 2017

Abstract

Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number β, with $|\beta| \leq 1$ and $R \geq 1$, it was shown by A.Zireh et al. [7] that for $|z|=1$, $$
\min _{|z|=1}\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \geq k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \min _{|z|=k}|P(z)| .
$$

In this paper, we shall present a refinement of the above inequality. Besides, we shall also generalize some well-known results.

Key Words: Growth of polynomials, minimum modulus of polynomials, inequalities.
AMS Subject Classifications: 30A10, 30C10, 30E15

1 Introduction and statement of results

If $P(z)$ is a polynomial of degree n then concerning the estimate of $|P(z)|$ on the disk $|z|=R, R>0$, we have the following inequalities

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=r<1}|P(z)| \geq r^{n} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

Inequality (1.1) is a simple consequence of Maximum Modulus Principle [5] where as inequality (1.2) is due to Zarantonillo and Verga [6]. Both the inequalities are sharp and equality holds for $P(z)=\lambda z^{n},|\lambda|=1$.

[^0]For polynomials having no zero in $|z|<1$, an inequality analogus to (1.1) due to Ankeny and Rivilin [1] is the following:

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|, \quad R \geq 1 \tag{1.3}
\end{equation*}
$$

The inequality is sharp and equality holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=$ $|\beta|$.

As a refinement of inequality (1.3) Aziz and Dawood [3] have found that
If $P(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, then for $R \geq 1$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{|z|=1}|P(z)| . \tag{1.4}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial $P(z)=\alpha z^{n}+\beta$ with $|\alpha|=|\beta|$.
Recently, A.Zireh et al. [7] have generalised inequality (1.4) and some results due to Dewan and Hans [4]. In fact they have considered the zeros of largest moduli and proved the following results.

Theorem 1.1. Let $P(z)$ be a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number β with $|\beta| \leq 1, R \geq 1$ and $|z|=1$.

$$
\begin{equation*}
\min _{|z|=1}\left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \geq k^{-n}\left|R^{-n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right| \min _{|z|=k}|P(z)| . \tag{1.5}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=\alpha\left(\frac{z}{k}\right)^{n}$.
Theorem 1.2. If $P(z)$ is a polynomial of degree n having no zeros in $|z|<k, k \leq 1$, then for every real or complex number β with $|\beta| \leq 1, R \geq 1$ and $|z|=1$, we have

$$
\begin{align*}
& \left|P(R z)+\beta\left(\frac{R+k}{1+k}\right)^{n} P(z)\right| \\
\leq & \frac{1}{2}\left\{\left(k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|+\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right) \max _{|z|=k}|P(z)|\right. \\
& \left.-\left(k^{-n}\left|R^{n}+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|-\left|1+\beta\left(\frac{R+k}{1+k}\right)^{n}\right|\right) \min _{|z|=k}|P(z)|\right\} . \tag{1.6}
\end{align*}
$$

The inequality (1.6) is sharp and equality holds for the polynomial $P(z)=\alpha z^{n}+\beta k^{n}$, with $|\alpha|=|\beta|$.
In this paper, we consider the moduli of all the zeros of a polynomial and present some interesting results which provide refinements of Theorems A and B. we shall also generalize some well known results.

First, we shall prove the following refinement of Theorem 1.1.

[^0]: *Corresponding author. Email addresses: bazargar@gmail.com (B. A. Zargar), manzoorw9@gmail.com (A. W. Manzoor), pandithsha@gmail.com (S. Bashir)

