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Abstract. The objective of this note is to provide some (potentially useful) integral
transforms (for example, Euler, Laplace, Whittaker etc.) associated with the general-
ized k-Bessel function defined by Saiful and Nisar [3]. We have also discussed some
other transforms as special cases of our main results.
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1 Introduction

The Bessel function of fist kind has the power series representation of the form [4]:

Jυ (z)=
∞

∑
k=0

(−1)k( z
2

)2k+υ

Γ(k+υ+1)k!
, (1.1)

Romero et al. [16] introduced the k-Bessel function of the first kind defined by the series

Jγ,λ
k,ν (x)=
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n=0
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where k∈R; α,λ,γ,υ∈C; <(λ)>0 and <(υ)>0.
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Very recently, Saiful and Nisar [3] gave a new generalization of k-Bessel function
called the generalized k-Bessel function of the first kind defined for k∈R; σ,γ,υ,c,b∈C;
<(σ)>0, <(υ)>0 as:
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where the k-Pochhammer symbol (γ)n,k is defined by [1]:

(γ)ν,k =
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Γk (γ)
, (γ∈C\{0}), (1.4)

and the k-gamma function has the relation
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z
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( z
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)
, (1.5)

such that Γk(z)→Γ(z) if k→1.
The generalized hypergeometric function represented as follows [6]:
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provided p≤q, p=q+1 and |z|<1 and (α)n is well known Pochhammer symbol (see [6]).
The Fox-Wright generalization pΨq(z) of hypergeometric function pFq is given by (c.f. [7–
9, 15]):
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where Aj >0 (j=1,2,··· ,p); Bj >0 (j=1,2,··· ,q) and
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for suitably bounded value of |z|.
The generalized k-Wright function introduced in [10] as: For k ∈R+; z ∈C, αi,β j ∈
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Also, we recall here the following definitions:


