Certain Integral Transforms of Generalized *k*-Bessel Function

Kottakkaran Sooppy Nisar 1,* , Waseem Ahmad Khan 2 and Mohd Ghayasuddin 2

 ¹ Department of Mathematics, College of Arts and Science-Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 11991, Alkharj, Kingdom of Saudi Arabia
 ² Department of Mathematics, Faculty of Science, Integral University, Lucknow-226026, India

Received 6 June 2017; Accepted (in revised version) 11 December 2017

Abstract. The objective of this note is to provide some (potentially useful) integral transforms (for example, Euler, Laplace, Whittaker etc.) associated with the generalized *k*-Bessel function defined by Saiful and Nisar [3]. We have also discussed some other transforms as special cases of our main results.

Key Words: Gamma function, *k*-Bessel function, generalized *k*-Bessel function, integral transforms.

AMS Subject Classifications: 33C10, 65R10, 26A33

1 Introduction

The Bessel function of fist kind has the power series representation of the form [4]:

$$J_{v}(z) = \sum_{k=0}^{\infty} \frac{(-1)^{k} \left(\frac{z}{2}\right)^{2k+v}}{\Gamma(k+v+1)k!},$$
(1.1)

Romero et al. [16] introduced the *k*-Bessel function of the first kind defined by the series

$$J_{k,\nu}^{\gamma,\lambda}(x) = \sum_{n=0}^{\infty} \frac{(\gamma)_{n,k}}{\Gamma_k(\lambda n + \nu + 1)} \frac{(-1)^n (x/2)^n}{(n!)^2},$$
(1.2)

where $k \in \mathbb{R}$; $\alpha, \lambda, \gamma, v \in C$; $\Re(\lambda) > 0$ and $\Re(v) > 0$.

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* ksnisar1@gmail.com; n.sooppy@psau.edu.sa (K. S. Nisar), waseem08_khan@rediffmail.com (W. A. Khan), ghayas.maths@gmail.com (M. Ghayasuddin)

Very recently, Saiful and Nisar [3] gave a new generalization of *k*-Bessel function called the generalized *k*-Bessel function of the first kind defined for $k \in \mathbb{R}$; $\sigma, \gamma, v, c, b \in \mathbb{C}$; $\Re(\sigma) > 0$, $\Re(v) > 0$ as:

$$J_{k,\nu}^{b,c,\gamma,\sigma}(z) = \sum_{n=0}^{\infty} \frac{(c)^n (\gamma)_{n,k}}{\Gamma_k \left(\sigma n + \nu + \frac{b+1}{2}\right)} \frac{(z/2)^{\nu+2n}}{(n!)^2},$$
(1.3)

where the *k*-Pochhammer symbol $(\gamma)_{n,k}$ is defined by [1]:

$$(\gamma)_{\nu,k} = \frac{\Gamma_k(\gamma + \nu k)}{\Gamma_k(\gamma)}, \quad (\gamma \in \mathbb{C} \setminus \{0\}), \tag{1.4}$$

and the *k*-gamma function has the relation

$$\Gamma_k(z) = k^{\frac{z}{k} - 1} \Gamma\left(\frac{z}{k}\right),\tag{1.5}$$

such that $\Gamma_k(z) \rightarrow \Gamma(z)$ if $k \rightarrow 1$.

The generalized hypergeometric function represented as follows [6]:

$${}_{p}F_{q}\left[\begin{array}{c} \left(\alpha_{p}\right),\\ \left(\beta_{q}\right), \end{array}\right] = \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p} \left(\alpha_{j}\right)_{n}}{\prod_{j=1}^{q} \left(\beta_{j}\right)_{n}} \frac{z^{n}}{n!},$$
(1.6)

provided $p \le q$, p = q+1 and |z| < 1 and $(\alpha)_n$ is well known Pochhammer symbol (see [6]). The Fox-Wright generalization ${}_{p}\Psi_{q}(z)$ of hypergeometric function ${}_{p}F_{q}$ is given by (c.f. [7–9,15]):

$${}_{p}\Psi_{q}\left[\begin{array}{c}(\alpha_{1},A_{1}),\cdots,(\alpha_{p},A_{p}),\\(\beta_{1},B_{1}),\cdots,(\beta_{q},B_{q}),\end{array}\right] = {}_{p}\Psi_{q}\left((\alpha_{j},A_{j})_{1,p};(b_{j},\beta_{j})_{1,q};z\right)$$
$$=\sum_{n=0}^{\infty}\frac{\Gamma(\alpha_{1}+A_{1}n)\cdots\Gamma(\alpha_{p}+A_{p}n)}{\Gamma(\beta_{1}+B_{1}n)\cdots\Gamma(\beta_{q}+B_{q}n)}\frac{z^{n}}{n!},$$
(1.7)

where $A_j > 0$ ($j = 1, 2, \dots, p$); $B_j > 0$ ($j = 1, 2, \dots, q$) and

$$1 + \sum_{j=1}^{q} B_j - \sum_{j=1}^{p} A_j \ge 0$$

for suitably bounded value of |z|.

The generalized *k*-Wright function introduced in [10] as: For $k \in \mathbb{R}^+$; $z \in \mathbb{C}$, $\alpha_i, \beta_j \in \mathbb{R}$ $(\alpha_i, \beta_j \neq 0; i = 1, 2, \dots, p; j = 1, 2, \dots, q)$ and $(a_i + \alpha_i n), (b_j + \beta_j n) \in \mathbb{C} \setminus k\mathbb{Z}^-$

$${}_{p}\Psi_{q}^{k}(z) = {}_{p}\Psi_{q}^{k}\left[\left(\begin{array}{c} (a_{i},\alpha_{i})_{1,p} \\ (b_{j},\beta_{j})_{1,q} \end{array} | z \right) \right] = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma_{k}(a_{i}+\alpha_{i}n)}{\prod_{j=1}^{q} \Gamma_{k}(b_{j}+\beta_{j}n)} \frac{z^{n}}{n!}.$$
(1.8)

Also, we recall here the following definitions:

166