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Abstract. In this article, we propose and develop a time relaxation implementation of the
modular nonlinear filter model of [21]. A complete numerical analysis of the scheme, that includes
the computability of its numerical solutions, its stability, and velocity error estimates, is given.
This is followed by 2D and 3D numerical experiments that show the advantage of the proposed
scheme.
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1. Introduction

The range of size of the velocity eddies is very wide, especially in simulation with
higher Reynolds number. Based on the Kolmogorov theory [16], the computations
have to be done on a very fine mesh to be able to capture all the persistent eddies
and these proper numerical computations are not feasible with the current computer
power. For this reason, numerical regularization and computational stabilizations
have been explored in computational fluid dynamics, [4, 26, 15]. Herein, we study
a regularization that has been proposed by Adams, Stoltz and Kleiser [1, 2, 29, 30].
Let u represent the fluid velocity, h the characteristic mesh width, and δ = O(h)

a chosen length scale, and u
′

denote some representation of the part of u varying
over length scales < O(δ), i.e., the fluctuating part of u. This will be made specific
in Section 2 and 3. The fluid regularization model that we consider, was obtained
by adding a time regularization term, χu

′

to the Navier-Stokes equations (NSE)

ut + u · ∇u + ∇p − ν∆u + χu
′

= f , x ∈ Ω ,(1)

∇ · u = 0, x ∈ Ω .(2)

The term χu
′

is a linear, lower order term and it is intended to drive unresolved
velocity scales to zero exponentially fast. With that aim, χ > 0, and has units
of 1/time. The regularizations of this type have been extensively studied in the
literatures. Adams, Kleiser and Stoltz have performed numerical tests of this time
relaxation model on compressible flows with shocks and on turbulent flows, [28,
29, 30]. Guenanff [11] performed studies on aerodynamic noise. Rosenau [25],
Schochet and Tadmor [27] did studies of (1)-(2) in which the time relaxation model
was developed from a regularized Chapman-Enskog expansion of conservation laws.
In [22], it was shown that at high Reynolds number, solutions to (1)-(2), possess
an energy cascade which terminates at the mesh scale δ with the proper choice of
relaxation coefficient χ. Also, the joint helicity/energy cascade was investigated
in [20]. A standard continuous finite element analysis of the model (1)-(2) was
performed in [10].
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In [24], following the work from [6], it was also studied a continuous finite ele-
ment discretization of (1)-(2) that incorporated three ideas. First idea was to use
incompressible filter (i.e. a Stokes type of filter problem) for better consistency
outside of the periodic domains. Second idea was the efficient implementation of
linearization of Baker [3], that allows to solve for only one linear system per time
step with second order of accuracy. The third idea was the stabilization in time
that is natural for this linearization and which was first introduced in [17].

The goal of this paper is to present the implementation of the time-relaxation
regularization through the nonlinear filter stabilization method of [21]. The attrac-
tive feature of the modular adaptive nonlinear filter model [21] is that it allows
one to incorporate a desired eddy-viscosity model into the legacy codes by solving
an additional Stokes-Darcy type system, as mentioned in [5]. The idea has been
further extended to improve the Leray-α model in [7], and a first order, computa-
tionally efficient implementation has been recently reported in [9]. The proposed
scheme is also easy to incorporate into the existing codes. It requires solution of
the Stokes like system (or just an elliptic problem, since Laplace type of filtering
showed comparable results to Stokes for the few performed numerical experiments),
and changing the coefficient in the mass matrix.

This article is organized the following way. In Section 2 we give a precise defini-
tion of the discrete nonlinear filtering operator and of the generalized fluctuation u

′

.
We also give preliminaries about the finite element framework. Section 3 gives the
scheme and its unconditionally stability. In Section 4 the finite element convergence
error analysis is presented. In Section 5, we present 2D and 3D numerical tests that
show the effectiveness of the nonlinear filters for the time relaxation model.

2. Notation and Preliminaries

In order to discuss the effects of the regularization we introduce the following
notation. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·).
Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp

and ‖ · ‖Wk
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |Wk
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(·, t)‖mk dt

)1/m

.

The following function spaces are used in the analysis:

Velocity Space − X := H1
0 (Ω) ,

Pressure Space − P := L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dΩ = 0

}

,

Divergence− free Space − Z :=

{

v ∈ X :

∫

Ω

q∇ · v dΩ = 0, ∀ q ∈ P

}

.

We denote the dual space of X as X ′, with norm ‖ · ‖−1.

Let Ω ⊂ IRd́ (d́ = 2, 3) be a polygonal domain and let Th be a triangulation of
Ω made of triangles (in IR2) or tetrahedrons (in IR3). Thus, the computational
domain is defined by

Ω = ∪K; K ∈ Th.


