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Abstract. A mantle convection model consisting of the stationary Stokes equations and a time-
dependent convection-diffusion equation for the temperature is studied. The Stokes problem is

discretized with a conforming inf-sup stable pair of finite element spaces and the temperature
equation is stabilized with the SUPG method. Finite element error estimates are derived which
show the dependency of the error of the solution of one problem on the error of the solution of
the other equation. The dependency of the error bounds on the coefficients of the problem is

monitored.
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1. Introduction

The process that occurs in the three-dimensional spherical shell between the crust
and the core of the earth is called mantle convection. In this region, the magma
moves very slowly. The movement is driven by the differences of the temperature
at the hot core and the cool crust. Considering long time intervals, this movement
is usually modeled with an incompressible viscous flow equation. Main features of
this flow model are the high viscosity of order 1020 Pa s [9], the small value of the
thermal diffusivity (order O(10−8 m2

/s) in [9]), and the dependency of the viscosity
on other quantities, like the temperature. In turn, the temperature distribution
is also driven by the movement of the magma, such that the modeling leads to a
coupled problem. Simulations of mantle convection problems are quite challenging.
One has to consider a three-dimensional problem in a very long time interval. With
todays hardware and software capabilities, time intervals of almost 109 years are
simulated [9], which results in performing many time steps. The resolution of
important features, like plumes, requires to use adaptively refined grids. Massively
parallel simulations with dynamic load balancing become necessary. The model (1)
and (2) considered in this paper forms just the basic model. More advanced models
use non-Newtonian fluids or they include a coupling to models for the behavior of
the crust of the earth (solid material) to simulate the evolution of tectonic plates.

In this paper, the same model as in [27] is studied. Let Ω ⊂ Rd, d ∈ {2, 3}, be
bounded with polyhedral Lipschitz boundary ∂Ω. Because of the large viscosity,
the inertial term of the fundamental equations of fluid dynamics, the Navier–Stokes
equations, can be neglected in mantle convection problems and thus, the equations
reduce to the stationary incompressible Stokes equations. These equations with
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variable kinematic viscosity ν (θ) > 0 almost everywhere in Ω are given by

(1)
−2∇ · (ν (θ)D(u)) +∇p = f − β (θ) θ in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω,

where u is the velocity field, the velocity deformation tensor D(u) =
(
∇u+∇uT

)
/2

is the symmetric part of the gradient of u, p is the fluid pressure, and f represents
the body forces. Besides the dependency of the viscosity on the temperature θ, a
further impact of the temperature θ is described by the function β.

The equation for the temperature is time-dependent. It is a convection-diffusion
equation with a nonlinear diffusion term since the thermal diffusivity κ depends on
the temperature

(2)
∂tθ −∇ · (κ (θ)∇θ) + u · ∇θ = g in (0, T ]× Ω,

θ = 0 in (0, T ]× ∂Ω,
θ (0,x) = θ0 (x) in Ω.

Altogether, (1) and (2) form a coupled system of equations. For the sake of easy
implementation and efficiency, algorithms for the numerical solution of (1), (2) may
decouple these problems and linearizations might be applied. Two algorithms in
this spirit are as follows. Given a partition of the time interval into time steps
0 = t0 < t1 < . . . < tN = T :

Algorithm 1.1. Nonlinear problem for the temperature.

(1) the initial condition θ0 is given
(2) compute (u0, p0) with θ0
(3) for i = 1, . . . , N do
(4) compute θi with ui−1 or some other extrapolation,

solving a nonlinear problem
(5) compute (ui, pi) with θi
(6) end

and

Algorithm 1.2. Linear problem for the temperature.

(1) the initial condition θ0 is given
(2) compute (u0, p0) with θ0
(3) for i = 1, . . . , N do
(4) compute θi with θi−1 and ui−1 or some other extrapolations

solving a linear problem
(5) compute (ui, pi) with θi
(6) end

The finite element error analysis presented in this paper will focus on the indi-
vidual equations which are solved in steps 4 and 5.

Finite element analysis of (1), (2) are already presented in [26, 27]. In [26], the
case of constant viscosity (ν = 1) and thermal diffusivity is studied. In addition,
the right-hand side of the Stokes equations depends linearly on the temperature
in this paper. In both papers, the application of continuous piecewise linear (P1)
finite elements for all quantities is considered. This approach requires the use of a
stabilization of the discretization of the Stokes equations since the used pair of finite
element spaces for velocity and pressure does not satisfy a discrete inf-sup condition.
In [26, 27], the method of Brezzi and Pitkäranta [3] is applied. The convection-
diffusion equation (2) is usually convection-dominated. Also this feature requires


