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2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France.
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1 Introduction

Let (M,g) be a 3-dimensional closed manifold. We look for systems of equations with

unknowns (u,v,A), where u and v are functions and A is a 1-form, which express like











∆gu+Φ(x,v,A)u=up−1,

∆gv+
(

b+q2u2
)

v=qu2,

∆g A+bA=q(∇S−qA)u2,

(1.1)

where q > 0, Φ(x,v,A) = a−ω2(qv−1)2+|∇S−qA|2, ω ∈R, a,b,S ∈ C∞(M) are smooth

functions with a,b>0 in M, ∆g=−divg∇ is the Laplace-Beltrami operator when acting on

functions u and v, ∆g=δd+dδ is the Hodge-de Rham Laplacian when acting on 1-forms A
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and p∈(2,6] (d is the differential, δ is the codifferential, 6 is the critical Sobolev exponent).

Systems of equations like (1.1) are derived from the full KGMP system when we look for

solutions of such systems in the form Ψ(x,t)= u(x,t)eiS(x,t) with u depending only on x

and S in the splitted form S(x,t)=S(x)−ωt. The full KGMP system (see the discussion

in Hebey and Truong [1] and Section 2 below) for solutions like Ψ(x,t)= u(x,t)eiS(x,t) is

written as


















































∂2u

∂t2
+∆gu+m2

0u=up−1+

(

(

∂S

∂t
+qϕ

)2

−|∇S−qA|2
)

u,

∂

∂t

((

∂S

∂t
+qϕ

)

u2

)

−∇·
(

(∇S−qA)u2
)

=0,

−∇·
(

∂A

∂t
+∇ϕ

)

+m2
1ϕ+q

(

∂S

∂t
+qϕ

)

u2=0,

∆g A+
∂

∂t

(

∂A

∂t
+∇ϕ

)

+m2
1A=q(∇S−qA)u2,

(1.2)

where ∆g =−divg∇ is the Laplace-Beltrami operator, ∆g =δd is half the Laplacian acting

on forms, and δ is the codifferential. We assume here that we are in the static case, where

∂tu ≡ 0, ∂t A ≡ 0 and ∂t ϕ ≡ 0. We look for solutions with S(x,t) = S(x)−ωt. Such type

of solutions were introduced in the very nice paper by Benci and Fortunato [2] for the

Klein-Gordon-Maxwell equations in R
3 (see also D’Avenia, Mederski and Pomponio [3]).

A special choice of S in these papers gives rise to vortex solutions of the system. In the

case of (1.2), for such solutions, namely for solutions like Ψ(x,t)=u(x)ei(S(x)−ωt), the full

KGMP system (1.2) in the static case writes as























∆gu+m2
0u=up−1+

(

(qϕ−ω)2−|∇S−qA|2
)

u,

∇·
(

(∇S−qA)u2
)

=0,

∆g ϕ+m2
1ϕ+q(qϕ−ω)u2=0,

∆g A+m2
1A=q(∇S−qA)u2.

(1.3)

Thanks to the fourth equation in this system, since m1 6=0 and δ∆g=0, the second equation

in (1.3) can be omitted and replaced by the Coulomb gauge equation δA= 0. Also the

second equation is automatically satisfied in the Klein-Gordon-Maxwell setting for which

m1 = 0 (since δ∆g = 0). When δA= 0, we get that ∆g A=∆g A, where ∆g = dδ+δd is the

Hodge-de Rham Laplacian on forms. Letting ϕ=ωv, and if we replace m2
0 by a positive

function a, and m2
1 by a positive function b, the system (1.3) reduces to (1.1) when we

forget about the Coulomb gauge equation δA = 0. It’s not clear that much can be said

about (1.1). The goal in this paper is to prove that despite it’s intricate structure, strong

results can be proved on this system. We recall that a coercive operator like ∆g+Λg has

positive mass if the regular part of its Green’s function is positive on the diagonal. Our

main result is the following theorem. More results are proved in the sequel. The subscript

R in the notation C∞
R refers to the fact that a,b,S in the theorem are (real-valued) functions.


