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Abstract. This paper mainly focuses on an efficient numerical method for the opti-
mization problem constrained with a stationary Maxwell system. Following the idea
of [32], the edge element is applied to approximate the state variable and the control
variable, then the continuous optimal control problem is discretized into a finite di-
mensional one. The novelty of this paper is the approach for solving the discretized
system. Based on the separable structure, an alternating direction method of multipli-
ers (ADMM) is proposed. Furthermore, the global convergence analysis is established
in the form of the objective function error, which includes the discretization error by
the edge element and the iterative error by ADMM. Finally, numerical simulations are
presented to demonstrate the efficiency of the proposed algorithm.
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1 Introduction

Many complicated problems in engineering, mathematical finance, physics, and life sci-
ences could be modeled by optimization problems with partial differential equations
(PDEs) as constraints. The rising number of real world applications demands further
developments in numerical schemes for PDE-constrained optimization problems. Thus
far, the numerical method based on finite difference methods, finite volume methods,
etc., have been developed for the elliptic equation or parabolic equation constrained op-
timizations and we refer [6, 9–12, 37], and references therein for the rich literature.
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The stationary Maxwell equations play important roles in many modern technolo-
gies and applications such as fusion energy, magnetohydrodynamics, electromagnetic
induction heating, signal processing, magnetic levitation, and so on. Since the pioneer-
ing works of mathematicians and engineers, including Nédélec [22, 23] and Monk [20],
the edge element method for solving Maxwell’s equations has been widely accepted in
the field of mathematical sciences as well as engineering. And for other numerical meth-
ods, please see [1, 16, 21, 25, 26, 31, 36] for the details. Recently, the optimal control of
Maxwell’s equations has attracted researchers’ attentions. For the complexity of this kind
of problems, the existing researches are mainly based on the degenerate Maxwell’s equa-
tions [30, 32, 33]. Here, we also focus on the optimization problem constrained with a
stationary Maxwell system, and propose an efficient numerical algorithm with the help
of the analysis on the edge element in [32] and ADMM in [5].

Generally speaking, there are two strategies for solving the stationary Maxwell con-
strained optimization problem as well as the traditional PDE-constrained optimization
problems: discretize-then-optimize and optimize-then-discretize algorithms [6]. It is well
known that the two strategies are equivalent in the sense that the discretised system of
the continuous optimality conditions coincides with the optimality conditions for the dis-
cretised minimization problem [33], but they have differences in terms of system struc-
ture. The latter approach is mainly based on solving a continuous variational system and
the aim of the former is to deal with a discretised optimization problem, which could
be solved by other optimization algorithms except for the first order optimal condition.
Furthermore, based on whether the state variable can be expressed as a function of the
control variable directly or not, the numerical methods are divided into reduced space
methods and full space methods. Full space methods often are used to solve the opti-
mal control problems with stationary or nonlinear PDE constraints, and reduced space
methods are mainly applied to solve the problems with memory requirements or time-
dependent problems.

Here, we only mention two representative algorithms for the stationary Maxwell con-
strained optimization problems. One is the standard gradient descent method, which is a
reduced space method with the discretize-then-optimize strategy. The existence, unique-
ness, and regularity of the optimal solution for the Maxwell constrained optimization
problems with the pointwise state constraints are shown in [32]. Yousept adopted the
edge element method to discretize the reduced problem, and solve the discretized sys-
tem by the gradient descent method. He also presented the error estimates and obtained
a reasonable numerical performance. The other one is the adaptive edge element method,
which is a full space method with the optimize-then-discretize strategy. Xu and Zou pro-
posed an adaptive edge element method to solve the KKT system associated with the
original optimal control problem [30]. A posteriori error estimator of the residue type is
derived for the lowest-order edge element approximation. They have also proved that
the sequence of discrete solutions converges strongly to the exact solution and the error
estimator has a vanishing limit. We refer to [2–4, 24] for more details on the theoreti-
cal and computational analysis for the optimization problem constrained by Maxwell’s


