On the Z-Eigenvalue Bounds for a Tensor

Wen Li^{1,*}, Weihui Liu² and Seakweng Vong²

¹ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

² Department of Mathematics, University of Macau, Macau, China

Received 2 September 2017; Accepted (in revised version) 19 December 2017

Dedicated to Professor Xiaoqing Jin on the occasion of his 60th birthday

Abstract. In this paper, we first propose a Z_p -eigenvalue of a tensor, which includes the Z_1 - and Z_2 -eigenvalue as its special case, and then present a Z_p -eigenvalue bound. In particular, we give a *Z*-spectral radius bound for an irreducible nonnegative tensor via the spectral radius of a nonnegative matrix. The proposed bounds improve some existing ones. Some numerical examples are given to show the validity of the proposed bounds.

AMS subject classifications: 15A15, 15A69, 65F25 **Key words**: Nonnegative tensors, Z-spectral radius, irreducibility.

1. Introduction

The *Z*-eigenvalue problem for a tensor is a useful tool for computing the joint limiting probability distribution of the approximation tensor model of higher-order Markov chains (see e.g., [3, 10]), the PageRank vector in multilinear PageRank models [4, 11], best rank-one approximations in Statistical Data Analysis (e.g., see [6, 7, 20]). We first introduce some definitions and notations, which are the same as in [8].

Let \mathbb{C} (\mathbb{R}) be the complex (real) field. An m^{th} order n dimensional tensor in \mathbb{C} is denoted by

 $\mathscr{A} = (a_{i_1 \cdots i_m}), \quad a_{i_1 \cdots i_m} \in \mathbb{C}, \quad 1 \le i_1, \cdots, i_m \le n.$

A tensor \mathscr{A} is called nonnegative (or, respectively, positive), if $a_{i_1 \cdots i_m} \ge 0$ (or, respectively, $a_{i_1 \cdots i_m} > 0$) for all i_1, \cdots, i_m . A real tensor is called (super-) symmetric [1,16] if its entries are invariant under any permutation of their indices. We shall denote the set of all m^{th} order *n* dimensional tensors by $\mathbb{C}^{[m,n]}$, and the set of all nonnegative (or, respectively, positive) m^{th} order *n* dimensional tensors by $\mathbb{R}^{[m,n]}_+$ (or, respectively, $\mathbb{R}^{[m,n]}_+$).

Let \mathscr{A} be an m^{th} order n dimensional tensor and $x = (x_1, \dots, x_n)^T$ be an n-dimensional vector, we define $\mathscr{A} x^{m-1}$ to be an n-dimensional vector given by

810

http://www.global-sci.org/nmtma

^{*}Corresponding author. *Email addresses:* liwen@scnu.edu.cn (W. Li), liu.weihui@connect.umac.mo (W. Liu), swvong@umac.mo (S. Vong)

Z-Eigenvalue Bounds

$$\mathscr{A}x^{m-1} := \left(\sum_{i_2,\cdots,i_m}^n a_{i_1\cdots i_m} x_{i_2}\cdots x_{i_m}\right)_{1\le i\le n}.$$
(1.1)

Let $\mathbb{P} = \{(x_1, x_2, \dots, x_n)^T | x_i \ge 0\}$ be the positive cone, and let the interior of \mathbb{P} be denoted by $int(\mathbb{P}) = \{(x_1, x_2, \dots, x_n)^T | x_i > 0\}$. When $y \in \mathbb{P}$ (or $y \in int(\mathbb{P})$), y is said to be a nonnegative (or positive) vector.

The following two definitions of eigenpairs were introduced by Lim [13] and Qi [16], respectively.

Definition 1.1. Let $\mathscr{A} \in \mathbb{R}^{[m,n]}$. A pair $(\lambda, x) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is called an eigenvalueeigenvector (or simply eigenpair) of \mathscr{A} if the equation

$$\mathscr{A}x^{m-1} = \lambda x^{[m-1]} \tag{1.2}$$

holds, where $x^{[m-1]} := (x_1^{m-1}, \dots, x_n^{m-1})^T$. We call (λ, x) an H-eigenpair if both λ and x are real.

Definition 1.2. Let $\mathscr{A} \in \mathbb{R}^{[m,n]}$. A pair $(\lambda, x) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is called an *E*-eigenvalue and an *E*-eigenvector (or simply an *E*-eigenpair) of \mathscr{A} if the equations

$$\mathscr{A}x^{m-1} = \lambda x, \qquad x^T x = 1 \tag{1.3}$$

hold. We call (λ, x) a Z-eigenpair if both λ and x are real. Generally, for $p \ge 1$, a pair $(\lambda^{(p)}, x) \in \mathbb{R} \times (\mathbb{R}^n \setminus \{0\})$ is called a Z_p -eigenpair of \mathscr{A} if $(\lambda^{(p)}, x)$ satisfies the equations

$$\mathscr{A} x^{m-1} = \lambda^{(p)} x, \quad \|x\|_p = 1,$$

where $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$.

It is noted that when p = 1, a pair $(\lambda^{(1)}, x)$ is called a Z_1 -eigenpair (see [2]), which is important for some applications, e.g., for computing the limiting probability distribution in high order Markov chains (e.g. see [8, 10]). For p = 2, i.e., Z_2 -eigenpair $(\lambda^{(2)}, x)$ is called a Z-eigenpair as in Definition 1.2, which is denoted by (λ, x) for simplicity. By Definition 1.2 of the Z_p -eigenpair it is easy to see that the following lemma holds:

Lemma 1.1. Let $\mathscr{A} \in \mathbb{R}^{[m,n]}$. If $(\lambda^{(q)}, x)$ is a Z_q -eigenpair, then for any positive number p with $p \neq q$, $\left(\frac{\lambda^{(q)}}{\|x\|_p^{m-2}}, \frac{x}{\|x\|_p}\right)$ is a Z_p -eigenpair.

In the rest of the paper, without further illustration, we use a Z-eigenvalue to replace a Z_2 -eigenvalue.

Definition 1.3. A tensor $\mathscr{A} = (a_{i_1i_2\cdots i_m}) \in \mathbb{R}^{[m,n]}$ is called reducible if there exists a nonempty proper index subset $I \subset \{1, \cdots, n\}$ such that

$$a_{i_1\cdots i_m}=0, \quad \forall i_1\in I, \ i_2,\cdots,i_m\notin I.$$

If \mathscr{A} is not reducible, then we call \mathscr{A} irreducible.