## An Approximation of Three-Dimensional Semiconductor Devices by Mixed Finite Element Method and Characteristics-Mixed Finite Element Method

Qing Yang<sup>1,\*</sup>, Yirang Yuan<sup>2</sup>

 <sup>1</sup>School of Mathematical Science, Shandong Normal University, Jinan, 250014, China.
 <sup>2</sup>Institute of Mathematics, Shandong University, Jinan, 250100, China.

Received 15 August 2012; Accepted (in revised version) 03 May 2014

Abstract. The mathematical model for semiconductor devices in three space dimensions are numerically discretized. The system consists of three quasi-linear partial differential equations about three physical variables: the electrostatic potential, the electron concentration and the hole concentration. We use standard mixed finite element method to approximate the elliptic electrostatic potential equation. For the two convection-dominated concentration equations, a characteristics-mixed finite element method is presented. The scheme is locally conservative. The optimal  $L^2$ -norm error estimates are derived by the aid of a post-processing step. Finally, numerical experiments are presented to validate the theoretical analysis.

AMS subject classifications: 65M15; 65M60

**Key words**: Three-dimensional semiconductor devices, characteristics-mixed finite element method, mixed finite element method, post-processing step, error bound.

## 1. Introduction

The numerical simulation of the transient behavior of semiconductor devices is of great value both in theory and in practice (cf. [6, 17]). The production of actual semiconductor devices is mainly based on a planar technology. However, the down-scaling of the devices brings some severe problems such as increase of power densities and noise effects. The use of multi-gate field-effect transistors is a possible solution to reduce the noise. In such devices, the gate contact encloses the channel region from different sides to lead to smaller no-signal currents. But such devices require to be modeled and numerically simulated in three space dimensions. In this paper, we will consider the drift-diffusion model of three-dimensional semiconductor devices. The

\*Corresponding author. Email address: sd\_yangq@163.com (Q. Yang); yryuan@sdu.edu.cn (Y. Yuan)

http://www.global-sci.org/nmtma

356

©2015 Global-Science Press

An Approximation of 3D Semiconductor Devices by Mixed Methods

mathematical model is a coupled system of three quasi-linear partial differential equations with initial and boundary conditions (cf. [2, 4, 12, 18, 19]). The equation for the electrostatic potential is a Poisson equation. The continuity equations for the electrons and holes are of convection-dominated diffusion type. The model is described by the following system

$$-\Delta \psi = \nabla \cdot u = \alpha (p - e + F(x)), \qquad (x, t) \in \Omega \times [0, T], \qquad (1.1a)$$

$$\frac{\partial e}{\partial t} = \nabla \cdot [D_e(x)\nabla e + \mu_e(x)eu] - R(e,p), \quad (x,t) \in \Omega \times J,$$
(1.1b)

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[ D_p(x) \nabla p - \mu_p(x) p u \right] - R(e, p), \quad (x, t) \in \Omega \times J,$$
(1.1c)

where J = (0,T], and  $\Omega$  is a bounded domain in  $\mathcal{R}^3$ . Here  $\psi$ , e and p are the electrostatic potential, the electron and hole concentrations, respectively.  $u = -\nabla \psi$  is the electric field.  $\alpha = q/\vartheta$ , where q > 0 is the electronic charge and  $\vartheta > 0$  is the dielectric permittivity.  $D_s(x)(s = e, p)$  are the diffusion coefficients which are related to the carrier mobilities  $\mu_s(x)(s = e, p)$  through the Einstein relation  $D_s(x) = U_T \mu_s(x)$ , with  $U_T$  being the thermal voltage. R(e, p) is the net recombination rate.  $F(x) = N_D(x) - N_A(x)$  is the doping profile in the device, where  $N_D(x)$  and  $N_A(x)$  are the donor and acceptor impurity concentrations, respectively.

We consider the following boundary and initial conditions

$$-\frac{\partial\psi}{\partial\nu}\Big|_{\partial\Omega} = u \cdot \nu = 0, \qquad \frac{\partial e}{\partial\nu}\Big|_{\partial\Omega} = 0, \qquad \frac{\partial p}{\partial\nu}\Big|_{\partial\Omega} = 0, \quad t \in J, \tag{1.1d}$$

$$e(x,0) = e_0(x), \ p(x,0) = p_0(x), \ x \in \Omega,$$
 (1.1e)

where  $\nu$  is the unit outward normal vector on boundary  $\partial \Omega$ .

The following compatibility condition (cf. [17])

$$\int_{\Omega} (p_0 - e_0 + F) dx = 0$$
 (1.1f)

must be imposed on the data in order that a solution is possible. In addition, we apply the conditions

$$\int_{\Omega} \psi dx = 0, \ 0 \le t \le T \tag{1.1g}$$

to determine a unique  $\psi$  for each t.

In reality (1.1b) and (1.1c) might be strongly convection-dominated when  $D_s(s = e, p)$  are quite small. In such circumstance, the standard Galerkin or difference scheme does not work well any more. In order to obtain better approximations, a variety of numerical techniques, such as characteristic finite element method (cf. [18]), characteristic finite difference method (cf. [4, 19]), upwind finite volume method (cf. [14–16]), etc., have been used for (1.1) in two or three space dimensions.

Although the modified method of characteristic finite element method (MMOC-Galerkin) (cf. [5,9]) has advantages of avoidance of numerical diffusion and nonphysical oscillations and smaller time-truncation, it fails to preserve local mass balance. Preserving mass locally is of great importance in practice. In [1], Arbogast and Wheeler