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Abstract. In this paper, a local multilevel algorithm is investigated for solving linear
systems arising from adaptive finite element approximations of second order elliptic

problems with smooth complex coefficients. It is shown that the abstract theory for

local multilevel algorithm can also be applied to elliptic problems whose dominant
coefficient is complex valued. Assuming that the coarsest mesh size is sufficiently

small, we prove that this algorithm with Gauss-Seidel smoother is convergent and

optimal on the adaptively refined meshes generated by the newest vertex bisection
algorithm. Numerical experiments are reported to confirm the theoretical analysis.
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1. Introduction

Multilevel or multigrid methods are very efficient for solving the systems arising

from the approximation of elliptic boundary value problems. The convergence prop-

erties of multigrid methods on quasi-uniform meshes have been studied by [2, 5, 7,

9, 11, 16, 18, 30, 31] and the references therein. Multigrid methods on locally refined

meshes was first introduced by Brandt [10]. Subsequently, the techniques on locally re-

fined meshes have been widely investigated, such as the multilevel adaptive technique

(MLAT) in [1, 20, 27] and the fast adaptive composite grid (FAC) methods in [21–24].

Recently, Wu and Chen [33] proposed a multigrid V-cycle algorithm with Gauss-Seidel

smoother on adaptive refined meshes generated by the newest vertex bisection algo-

rithm, they proved that this algorithm is convergent and optimal when the smoother

performing only on the new nodes and their “immediate” neighbors (i.e., the old nodes
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whose support or the nodal basis function has changed). Therefore, this multigrid

algorithm is more robustly applied to practical problems. Based on the well known

Schwarz theory [29], Xu and Chen [13, 32] proved the convergence of some local

multilevel algorithms with Gauss-Seidel and Jacobi smoothers applied to second order

elliptic boundary value problems.

The purpose of this paper is to study local multilevel algorithm applied to second

order complex coefficient elliptic problems. Complex coefficient problems arising from

time harmonic scattering and radiation have been studied in [4,8,14,19]. Gopalakrish-

nan and Pasciak [17] proved that multigrid algorithm is convergent on quasi-uniform

meshes for second order elliptic problems with smooth complex coefficients. In this

paper, adopting the techniques developed in [13], we analyze the convergence of local

multilevel algorithm with Gauss-Seidel smoother applied to complex coefficient elliptic

problems. The key is how to extend the assumption conditions presented in [13, 30]

to complex coefficient case and verify them. Based on the perturbation arguments pro-

posed in [17], it is shown that this algorithm converges if the mesh size of the coarsest

grid is sufficiently small.

We shall use the standard notation for the Sobolev spaces Wm
p (Ω) with norm ‖ ·

‖m,p,Ω and the seminorm | · |m,p,Ω [15]. For p = 2, we denote Hm(Ω) = Wm
2 (Ω),

H1
0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0}, ‖ · ‖m = ‖ · ‖m,2 and ‖ · ‖ = ‖ · ‖0,2. Throughout

this paper, the notation x . y (or x & y) represent the inequality x ≤ Cy (or x ≥ Cy),

where the positive constant C is independent of all the variables in the inequality. The

notation x ≈ y is equivalent to the statement that x . y and x & y.

The rest of the paper is organized as follows. In Section 2, we describe the multi-

level method on adaptively refined meshes applied to a model of elliptic problem with

complex coefficient. In Section 3, we present a convergence estimate for the local mul-

tilevel algorithm with Gauss-Seidel smoother. Finally, in Section 4, some numerical

examples are given to show the efficiency of the local multilevel algorithm.

2. Multilevel algorithm on adaptively refined meshes

To illustrate the main idea, we consider the following second order elliptic problem

[17] {
−∇ · (α(x)∇u) = f, in Ω,
u = 0, on ∂Ω,

(2.1)

where Ω is a polygonal domain in R2 and α(x) : Ω → C is a complex valued non-

vanishing function in C2(Ω), f ∈ L2(Ω). Assuming that there exists a positive constant

α0 such that |α(x)| ≥ α0 for all x ∈ Ω.

For brevity, we omit the variable x in the following exposition. The variational form

of (2.1) is to find u ∈ H1
0 (Ω) such that

A(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), (2.2)
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