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Abstract. In this paper, we propose a multigrid algorithm based on the full ap-

proximate scheme for solving the membrane constrained obstacle problems and the

minimal surface obstacle problems in the formulations of HJB equations. A Newton-
Gauss-Seidel (NGS) method is used as smoother. A Galerkin coarse grid operator is

proposed for the membrane constrained obstacle problem. Comparing with standard
FAS with the direct discretization coarse grid operator, the FAS with the proposed

operator converges faster. A special prolongation operator is used to interpolate

functions accurately from the coarse grid to the fine grid at the boundary between
the active and inactive sets. We will demonstrate the fast convergence of the pro-

posed multigrid method for solving two model obstacle problems and compare the

results with other multigrid methods.
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1. Introduction

The obstacle problem is to find the equilibrium position of an elastic membrane

which is constrained to lie below and/or above some given obstacles. Due to the obsta-

cle constraints, the problem is often posed as a constrained minimization problem [3,

19]. Since the contact location of the membrane and the obstacle is usually unknown,

sometimes the obstacle problem is studied as free boundary problem [5]. Obstacle

problem can also be formulated as elliptic variational inequalities [8], linear comple-

mentarity problems [2, 17], and Hamilton-Jacobi-Bellman (HJB) equations [10]. All

∗Corresponding author.

http://www.global-sci.org/nmtma 199 c©2015 Global-Science Press

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w08si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:32:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w08si
https://www.cambridge.org/core


200 C. Wu, J. Wan

these formulations result in a nonlinear problem. A finite difference or finite element

discretization will yield a nonlinear system of discrete equations. This paper consid-

ers fast solvers and in particular multigrid methods for solving the nonlinear discrete

equations.

Many methods have been introduced to solve elliptic variational inequality partial

differential equations (PDEs). Projected relaxation methods are popular techniques to

solve elliptic variational inequalities [6, 7]. They are known to be easy to implement

and convergent. However, the drawback of this approach is that its convergence de-

pends on the choice of the relaxation parameter and has a slow asymptotic convergence

rate.

Various forms of preconditioned conjugate gradient (PCG) algorithms for solving

nonlinear variational inequalities are presented in [16]. They are more efficient than

the projected relaxation method in some cases. However, the rates of convergence still

depend on the size of the problem. For problems with small grid sizes, PCG methods

may not be very efficient.

A multigrid method is introduced in [8] to solve the finite difference discretized

PDE for an obstacle problem. Two phases are used in this method. The aim of the first

phase, in which a sequence of coarse grids is used, is to get a good initial guess for the

iterative phase two. In the second phase, the problem is solved by a W-cycle multigrid

method. A cutting function is applied after the coarse grid correction. The convergence

is shown to be better than PCG. However, the application of the cutting function and

the phase one may lead to more expensive computations overall.

Elliptic variational inequalities can be reformulated as linear complementarity prob-

lems. A multigrid method, namely, projected full approximate scheme (PFAS), is pro-

posed in [2] to solve linear complementarity problems arising from free boundary prob-

lems. The multigrid method is based on the full approximate scheme (FAS), which is

often used for solving nonlinear PDEs. The multigrid method is built on a general-

ization of the projected SOR. Two further algorithms based on PFAS are introduced:

PFASMD and PFMG, both of which are faster than PFAS. These methods show better

convergence rates than the method in [8].

In [17], a PFAS multigrid is applied to solve the American style option problem

which is formulated as a linear complementarity problem. The American style option

problem can be viewed as an obstacle type problem where the obstacle is given by the

payoff function. An F-cycle multigrid method is applied and a Fourier analysis of a

smoother is provided. A comparison between an F-cycle and a V-cycle for solving linear

complementarity problems is shown. In general, F-cycles show faster convergence than

V-cycles [17]. However, an F-cycle requires more computations in each iteration, and

so it is relatively more expensive.

Elliptic variational inequalities can also be reformulated as Hamilton-Jacobi-Bellman

(HJB) equations. A multigrid algorithm which involves an outer and an inner iteration

is proposed in [10]. The active and inactive sets of all grid levels are computed and

stored in the outer loop. A W-cycle FAS multigrid method is applied to solve a linearized

PDE in the inner iteration. An iterative step similar to [8] is adopted to compute a good
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