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Abstract. Adaptive numerical methods for solving partial differential equations (PDEs)

that control the movement of grid points are called moving mesh methods. In this
paper, these methods are examined in the case where a separate PDE, that depends

on a monitor function, controls the behavior of the mesh. This results in a system of

PDEs: one controlling the mesh and another solving the physical problem that is of
interest. For a class of monitor functions resembling the arc length monitor, a trade

off between computational efficiency in solving the moving mesh system and the

accuracy level of the solution to the physical PDE is demonstrated. This accuracy is
measured in the density of mesh points in the desired portion of the domain where

the function has steep gradient. The balance of computational efficiency versus ac-
curacy is illustrated numerically with both the arc length monitor and a monitor

that minimizes certain interpolation errors. Physical solutions with steep gradients

in small portions of their domain are considered for both the analysis and the com-
putations.
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1. Introduction

Moving mesh methods are a class of numerical techniques for solving partial differ-

ential equations (PDEs) where the mesh is allowed to evolve in order to better approx-

imate the solution. The idea is to adaptively move grid points to places in the domain

where the solution changes in a significant way, leaving fewer mesh points in regions

where the solution does not change very much. The location of the grid points is de-

termined by a mapping from a computational domain, ΩC , into the physical domain

where the PDE is originally defined, ΩP ([1, 2]). There are several methods for deter-

mining the mesh mapping, but in this paper we focus on using a monitor function that
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defines some measure of error, with the mesh mapping function distributing this error

in some optimal way.

Using a monitor function is convenient, since the mesh transform can be defined

as the solution of a PDE and solved simultaneously, along with the original PDE. This

results in a moving mesh system of equations, with one PDE controlling the movement

of the mesh points and another PDE defining the physical process of interest. While

this coupled system incurs more computational cost, since it requires that the mesh

points be tracked accurately, it avoids the use of interpolation on dynamically chang-

ing grids in the physical domain. Updating the mesh via such interpolation schemes

may cause numerical instabilities and inaccuracies, especially when the mesh has large

deformations.

Even though much work has been done in studying the individual components of

the moving mesh system, few papers consider the computational properties of the en-

tire system. In [3], the distribution of mesh points is viewed as a constraint on the

physical PDE and the stability of the resulting system of DAEs is discussed. For physical

problems with steep gradients or large function values, [4] considers the efficiency of

the overall system and shows that for a moving mesh system using the arc length (AL)

monitor, there is a gain in efficiency when compared with solving the original physical

PDE on a fixed mesh. Since more mesh points are moved toward the region where the

solution changes most, this moving mesh system gives a more accurate solution to the

physical PDE, especially when compared to a fixed mesh solution. This shows that by

the proper design of a moving mesh system, one can gain both accuracy and efficiency.

The current paper extends the work done in [4] by establishing a similar efficiency re-

sult for a general class of monitor functions. Also, by considering a discretized version

of the moving mesh system, we establish estimates that describe the accuracy of the

computed solution in terms of the mesh spacing in the physical domain. In certain cir-

cumstances, these results allow the user to control the level of accuracy in the physical

solution or the level of efficiency in the system by selecting an appropriate monitor

function.

The choice of the monitor function plays a critical role in the grid distribution and is

not always a simple decision [5]. The characteristics of the solution to the physical PDE,

like large gradients or even singularities, usually determine which monitor functions

are suitable. However, numerical complexities in the physical solution can result in

similar complexities in the mesh equations, because the mesh information appears in

the coefficients of the transformed physical PDE. For example, a physical solution with

a large gradient may force the mesh to move more points to this region. But this uneven

distribution can result in large gradients in the equation for the mesh transform. So

while the moving mesh solution gains accuracy in regions where the physical solution

exhibits great change, the coupled system of physical PDE plus mesh PDE may have

added computational cost.

In this paper, we examine a set of monitor functions that resemble the AL monitor

([1, 2]) and a monitor that optimizes interpolation errors (OI) [1]. While these moni-

tor functions share a similar form and seem to affect the qualitative behavior of the grid
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