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Abstract. In order to suppress the failure of preserving positivity of density or pres-
sure, a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta

discontinuous Galerkin (RKDG) method is developed in this paper. Such a method is
implemented to simulate flows with the large Mach number, strong shock/obstacle

interactions and shock diffractions. The Cartesian grid with ghost cell immersed

boundary method for arbitrarily complex geometries is also presented. This ap-
proach directly uses the cell solution polynomial of DG finite element space as the

interpolation formula. The method is validated by the well documented test ex-

amples involving unsteady compressible flows through complex bodies over a large
Mach numbers. The numerical results demonstrate the robustness and the versatility

of the proposed approach.
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1. Introduction

Recently, the Cartesian grid methods have become very popular in computational

fluid dynamics (see [1–11] and their references), because such methods do not suf-

fer from the complex grid generation and grid management requirements which are

inherent in other methods, and also these methods are easily extended to high order
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numerical schemes. Conceptually, the Cartesian grid approach is much simpler to be

implemented than other grid methods. In general, solid bodies with a Cartesian grid

for the partition of the flow field are cut out of a single static background mesh and

their boundaries are represented by different types of cut cells. When cut cells become

very small, however, degenerate cells will be encountered. In this situation, numerical

instability may occur when an explicit time step scheme is used in numerical calcu-

lations. Some techniques have already been employed to overcome these problems

along with time step stability restrictions [1, 6–9]. Although there are many different

techniques, ghost cell method or immersed boundary method for its simplification still

obtains many researcher’s favourite [2–5, 10, 11]. In our recent article [12], we devel-

oped an adaptive Cartesian grid RKDG method combined with the ghost cell immersed

boundary technique to deal with a complex geometry. This methodology was based on

the image point ghost cell method [4] and used an inverse distance weighting interpo-

lation formula to obtain the value at the image point. In this paper, we extend this idea

and develop a new approach for immerse boundary treatment, in which the interpo-

lation formula for cell solution polynomials is created on discontinuous Galerkin finite

element space.

In practice, it is quite often to encounter the situation in which the density or pres-

sure of the numerical solutions becomes negative [13–15]. For instance, highly ener-

getic flows may contain regions with a dominant kinetic energy, and a relatively small

internal energy which is easy to become negative in the simulation [16]. Another

well-known example is the computational simulation of shock wave or gas detonation

propagation through different geometries [15]. The shock diffraction may result in

very low density and pressure [13–16]. In general, the most commonly used high or-

der numerical schemes for solving Euler equations do not satisfy the positivity property,

which may produce negative density or pressure and cause blow-ups of the numerical

algorithm. The ad hoc methods in numerical strategy, which modify the computed neg-

ative density and/or the computed negative pressure to be positive, destroy not only a

local and global conservation, but also often cause numerical instability [17]. Recently,

based on certain Gauss-Lobatto quadratures and positivity-preserving flux, Zhang and

Shu [13–15] used Lax-Friedrichs flux and successfully developed a positivity-preserving

approach for high-order discontinuous Galerkin methods. Such an approach is also ap-

plied to unstructured meshes and p-adaptive numerical solutions by Kontzialis and Eka-

terinaris [18]. In a recent paper of Wang et al. [16], they simplified the method and ex-

tended it to solve gaseous detonations. The aim of the present work, then, is to develop

a simple approach under the adaptive Cartesian grid to simulate large Mach number

flows with strong shock/obstacle interactions and shock diffraction. The present paper

can be considered as a companion work to [12] on the so-called adaptive Cartesian

grid RKDG methods for arbitrarily complex geometries. More specifically, in this paper

we employed a simplified version of high-order positivity-preserving technique with

h-adaptive RKDG method, and a modified version of the well-known Harten-Lax-van

Leer contact numerical flux named as HLLC-HLL flux in [19] to remedy the numerical

shock instability.
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