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Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on

Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem
is analyzed. The method is shown to be convergent uniformly in the perturbation

parameter ǫ provided only that ǫ ≤ N−1. An O(N−2(lnN)1/2) convergent rate in

a discrete streamline-diffusion norm is established under certain regularity assump-
tions. Finally, through numerical experiments, we verified the theoretical results.
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1. Introduction

In this paper, we consider a Streamline-Diffusion finite element method (SDFEM)

for the singularly perturbed boundary value problem

Lu := −ǫ∆u+ b · ∇u+ cu = f on Ω = (0, 1)2,
u = 0 on ∂Ω,

(1.1)

where 0 < ǫ ≪ 1 is a small positive parameter, b, c and f are sufficiently smooth

functions satisfying

b(x, y) = (b1(x, y), b2(x, y)) ≥ (β1, β2) > (0, 0), ∀(x, y) ∈ Ω̄, (1.2a)

c(x, y) ≥ 0, c(x, y) −
1

2
divb(x, y) ≥ c0 > 0, ∀(x, y) ∈ Ω̄, (1.2b)
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where β1, β2 and c0 are some constants. These hypotheses ensure that (1.1) has a

unique solution in H1
0 (Ω)

⋂

H2(Ω) for all f ∈ L2(Ω). Note that for sufficiently small ǫ,
the other hypotheses imply that (1.2b) can always be ensured by the simple change of

variable v(x, y) = e−σxu(x, y) where σ is chosen suitably. With the above assumptions,

the solution of (1.1) typically has boundary layers of width O(ǫ ln 1
ǫ ) at the outflow

boundary x = 1 and y = 1.

For small values of ǫ, standard Galerkin discretisation for (1.1) exhibits spurious

oscillations and fails to catch the rapid change of the solution in boundary layers, see

the numerical results in [15]. Many methods have been developed to overcome the

numerical difficulty caused by the boundary layers.

One of the most successful methods is the use of layer-adapted meshes. Provided

that some information on the structure of the layers was available, a piecewise uniform

Shishkin mesh(S-mesh) could be chosen a priori, see [1, 3]. Linß [8, 9] introduced

Bakhvalov-Shishkin mesh(B-S-mesh) which is a modification of S-mesh by using a uni-

form coarse mesh and a graded fine mesh with Shishkin’s simple choice of the transi-

tion point. The optimal convergence order O(N−1) on a B-S-mesh had been proved,

while on S-mesh it was only convergent of O(N−1 lnN). Zhang [5] investigated the

superconvergence of order O(N−2(lnN)2) in a discrete ǫ-weighted energy norm on a

S-mesh.

A powerful method for stabilising convection-diffusion problems is the streamline-

diffusion finite element method which was proposed by Hughes and Brooks [16]. This

method was known to provide good stability properties and high accuracy in boundary

layers. The convergence properties of the SDFEM had been widely studied[3,10-13].

In [13], the error between the SDFEM solution and the interpolation of the solution

of (1.1) on S-mesh was of order O(N−3/2 lnN) in the streamline-diffusion norm(SD

norm). In [10], a more careful analysis was performed by using interpolation error

identities of Lin, and this error was improved to O(N−2(lnN)2). In order to achieve

estimates for the interpolation error in SD norm, Stynes and Tobiska [10] firstly intro-

duced the discrete streamline-diffusion norm, and estimated an error bound of order

O(N−2(lnN)2) on S-mesh.

Here we shall analyze a SDFEM on B-S-mesh, and it will give more accurate results

than on S-mesh. There are three main results in this paper. First, the interpolation

error in discrete SD norm is presented to be convergent of O(N−2). Second, the error

between the solution of the discrete problem and the interpolation of the solution of the

continuous problem is shown to be bounded in discrete SD norm by O(N−2(lnN)1/2),
uniformly in ǫ. Third, we prove that the error between the solution of the discrete

problem and the solution of the continuous problem itself can be estimated in discrete

SD norm by O(N−2(lnN)1/2).

An outline of the paper is as follows. In Section 2 we describe the B-S-mesh and

the SDFEM. A decomposition of the solution u and some important preliminaries to

the analysis are presented in Section 3, and in Section 4 we analyze the convergence

properties of the method. In order to validate our theoretical results, numerical results

are presented in Section 5. We end in Section 6 with some concluding remarks.
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