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Abstract

In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear

Schrödinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into

the multisymplectic Hamiltonian form by introducing some canonical momenta. To sim-

ulate the problem efficiently, the CNLS-KdV equations are approximated by a high order

compact method in space which preserves N semi-discrete multisymplectic conservation

laws. We then discretize the semi-discrete system by using a symplectic midpoint scheme

in time. Thus, a full-discrete multisymplectic scheme is obtained for the CNLS-KdV equa-

tions. The conservation laws of the full-discrete scheme are analyzed. Some numerical

experiments are presented to further verify the convergence and conservation laws of the

new scheme.
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1. Introduction

Multisymplectic schemes are very popular in numerical computing context for Hamiltonian

PDEs since the end of last century due to the observation of their excellent behavior in long

time [2, 6, 9–11, 14, 17, 19]. The most frequently used approaches to construct multisymplectic

schemes are concatenating methods [24], for example, method of concatenating a pair of Runge-

Kutta methods in space and in time respectively, method of concatenating a symplectic Runge-

Kutta method in time with a spectral method or a finite element method in space [5,12,13,18,21].

In this paper, we attempt to construct a high order compact (HOC) multisymplectic scheme by

concatenating a symplectic Runge-Kutta method in time with a high order compact method

in space. Meanwhile, the high order compact multisymplectic scheme is applied to the coupled
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nonlinear Schrödinger-KdV (CNLS-KdV) equations [4, 26]

iUt + Uxx − UV = 0, i2 = −1, x ∈ R, t > 0, (1.1)

Vt + βVxxx +
1

2
α(V 2)x − (|U |2)x = 0, x ∈ R, t > 0, (1.2)

where U(x, t) and V (x, t) denote the complex-valued amplitude of the short wave and real-

valued amplitude of the long wave, respectively, α and β are the nonlinear and dispersive

parameters, respectively. This model describes the influence between longitudinal wave V (x, t)

and slowly varying envelopes of the short transverse wave U(x, t) in dispersive media.

We consider the CNLS-KdV equations (1.1)-(1.2) with the following initial-boundary con-

ditions

lim
|x|→∞

U(x, t) = 0, lim
|x|→∞

V (x, t) = 0, (1.3)

U(x, 0) = U0(x), V (x, 0) = V0(x). (1.4)

Then we can easily prove that the CNLS-KdV equations (1.1)-(1.4) follow the conserved quan-

tities:

P(t) =

∫

R

V (x, t)dx =

∫

R

V0(x)dx = P(0), (1.5)

D(t) =

∫

R

|U(x, t)|2dx =

∫

R

|U0(x)|2dx = D(0), (1.6)

H(t) =

∫

R

(|Ux(x, t)|2 + V (x, t)|U(x, t)|2 + β

2
(Vx(x, t))

2 − α

6
(V (x, t))3)dx

=

∫

R

(|U0x(x)|2 + V0(x)|U0(x)|2 +
β

2
(V0x(x))

2 − α

6
(V0(x))

3)dx

= H(0), (1.7)

M(t) =

∫

R

[I(U(x, t)Ux(x, t)) +
1

2
(V (x, t))2]dx

=

∫

R

[I(U0(x)U0x(x)) +
1

2
(V0(x))

2]dx

= M(0), (1.8)

where I denotes taking imaginary part. The first invariant (1.5) implies that the number of

particles is unchanged all along. The second one (1.6) is the so-called invariant of mass. The

third one (1.7) and the last one (1.8) are respectively the general conservation laws of the

Hamiltonian energy and momentum in the closing dynamic system. For the detailed proof of

the conservation laws, we refer to [27].

Numerical methods with high order accuracy are desired. For this purpose, one usually

widens the stencil to approximate derivatives. That is, one uses more adjacent nodes to get

higher accuracy. This obviously increases the complexity in practical computing. The typical

case is the spectral method which is of exponential convergence rate for sufficiently smooth

problems, but it results in full spectral differentiation matrices. To obtain high accuracy, an

alternative approach is the so-called HOC method [15, 16, 22]. Such kind of approximation is

not only of high accuracy, but also of small numerical dissipative errors and dispersive errors. It

features both high order accuracy and small stencil which leads to narrow bandwidth matrices.

The CNLS-KdV equations have been analyzed qualitatively by some authors [1, 4, 8, 20, 25]

ever since the pioneering works of Tsutsumi and Hatano [20]. There were some numerical

investigations on the CNLS-KdV equations [3, 7, 8]. Bai et al [3] developed a B-spline finite


