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Abstract

In this article, two block-centered finite difference schemes are introduced and analyzed

to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in

porous media. One scheme is Euler backward scheme with first order accuracy in time

increment while the other is Crank-Nicolson scheme with second order accuracy in time

increment. Stability analysis and second-order error estimates in spatial meshsize for both

pressure and velocity in discrete L2 norms are established on non-uniform rectangular grid.

Numerical experiments using the schemes show that the convergence rates are in agreement

with the theoretical analysis.
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1. Introduction

The non-Fickian flow in porous media is complicated by the history effect, which charac-

terizes various mixing length growth of flow, which has been investigated, for example, in [1,2]

and the references cited therein. This model of equation is very important in the transfer of re-

action and passive contaminates in aquifers. This problem arises from many physical processes

in which it is necessary to take into account the effects of memory due to the deficiency of the

usual diffusion equations. It can serve as engineering model for nonlocal reactive transport in

porous media [3, 4]. It can also be used to model heat conduction with memory [3].

There are many papers on the numerical methods for this kind of problems. Finite volume

methods for this problem were studied in [5, 6]. And finite element methods for this problem

have been presented in [7]. In [8], some numerical methods for integro-differential equations of

parabolic and hyperbolic types have been considered. And it is presented split least-squares

finite element methods for non-fickian flow in porous media in [9]. Jiang [10] have considered

mixed element methods for this problem when A, B are proportional to a unit matrix. And

the L2−error estimate and L∞−error estimate of mixed element methods for this problem in a

general case are considered [1,2]. Besides, it is considered the backward euler mixed FEM and

regularity of parabolic integrao-differential equations in [11].

In this paper we consider the block-centered finite difference methods for parabolic integro-

differential equation arising in the modeling of non-Fickian flow in porous media. Finite dif-

ference method [17] is a very practical and primary method to solve the partial differential

equation. In [12], a block-centered finite difference methods for the Darcy-Forchheimer model
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have been considered. Li and Rui present characteristic block-centred finite difference methods

for nonlinear convection-dominated diffusion equation [13]. Besides, Liu and Li have applied

the block-centered finite difference method to the nonlinear time-fractional parabolic equation

in [14]. And in this paper, we present two block-centered finite difference schemes. One is

Euler backward scheme with first order accuracy in time increment while the other is Crank-

Nicolson scheme with second order accuracy in time increment. We also use some notations

similar to [15]. We demonstrate that the proposed schemes are second-order error estimates in

spatial meshsize for both pressure and velocity in discrete L2 norms on non-uniform rectangu-

lar grid. Then we carry out some numerical examples to show the accuracy of the presented

block-centered finite difference schemes. Compared with the other existing methods for the

non-fickian flow in porous media, the applications of the block-centered finite difference meth-

ods enable us to approximate both the velocity and pressure with second-order accuracy, which

is the superconvergence. Also the block-centered finite difference methods can guarantee local

mass conservation. Besides, the applications of the block-centered finite difference methods

enable us to transfer the saddle point problem to symmetric positive definite problem.

The paper is organized as follows. In Sect.2 we give the problem, some notations and lem-

mas. In Sect.3 we present the block-centered finite difference methods. In Sect.4 we present

the stability analysis and error estimates for the presented methods. In Sect.5 some numer-

ical experiments using the block-centered finite difference schemes are carried out. And the

conclusion is given in Sect.6.

Through out the paper we use C, with or without subscript, to denote a positive constant,

which could have different values at different appearances.

2. The Problem and Some Preliminaries

In this section, We consider the parabolic integro-differential equation arising in the modeling

of non-Fickian flow in porous media. (see [1], [2]): find p=p(x, y, t) such that

∂p

∂t
+∇ · u = f(x, y, t), (x, y) ∈ Ω, t ∈ J, (2.1)

u = −(A∇p+

∫ t

0

B(s)∇p(s)ds), (x, y) ∈ Ω, t ∈ J, (2.2)

−A∇p · n = 0, (x, y) ∈ ∂Ω, t ∈ J, (2.3)

p
∣∣
t=0

= p0(x, y), (x, y) ∈ Ω. (2.4)

Here Ω = (0, 1) × (0, 1), J = (0, 1], n represents the unit exterior normal vector to the

boundary of Ω,

∇ =

(
∂

∂x
,

∂

∂y

)
, A = diag(ax(x, y, t), ay(x, y, t)), B = diag(bx(x, y, t), by(x, y, t)).

We suppose that f , A and B are bounded smooth functions. And there exist positive constants

α1, α2, θ1, θ2, such that

α1 ≤ ax ≤ α2, α1 ≤ ay ≤ α2, θ1 ≤ bx ≤ θ2, θ1 ≤ by ≤ θ2.

Also suppose that there exists a positive constant q, such that |dta−l| ≤ q, l = x, y.


