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Abstract

We propose a parallel stochastic Newton method (PSN) for minimizing unconstrained

smooth convex functions. We analyze the method in the strongly convex case, and give

conditions under which acceleration can be expected when compared to its serial counter-

part. We show how PSN can be applied to the large quadratic function minimization in

general, and empirical risk minimization problems. We demonstrate the practical efficiency

of the method through numerical experiments and models of simple matrix classes.
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1. Introduction

This work presents a novel parallel algorithm for minimizing a strongly convex function

without constraints. This work is motivated by the possibility of better leveraging the structure

in surrogate approximation, and the need for efficient optimization methods of high dimensional

functions. The age of “Big Data” demands efficient algorithms to solve optimization problems

that arise, for example, in fitting of large statistical models or large systems of equations.

These new demands define open questions in algorithm design that make previously efficient

algorithms obsolete.

For example, in this context, classical second order methods such as Newton method are

not applicable as the inversion step of the algorithm is too costly (O(n3)) to be performed in

big data settings. Due to this reason, first-order algorithms enjoy huge popularity in the field

of practicing optimizers, mainly in the field of machine learning. Recent years have shown that

randomization and use of second-order information can lead to better convergence properties

of algorithms. A prime example of this utilization are coordinate methods; to mention a

few: [3, 14, 18, 20]. Another school, more traditionally grouped under term second-order, has

seen a plethora of algorithms in recent year with modified LBFGS [6,8] methods to sub-sampled

Newton methods [2, 11, 21–23], which coincide with the direction of this work.

In the current trend, computations are increasingly becoming parallelized, and the increase

in performance is usually achieved by including more computing units solving a problem in

parallel. Such architectures demand an efficient design of parallel algorithms that are able to

exploit the parallel nature of computing clusters. An effort has been undertaken to provide
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theoretical certificates on convergence of parallel optimization algorithms, to name a few, [19,

20], or from class of stochastic methods [16, 21, 29].

We chose to extend an existing algorithm that utilizes curvature information, called SDNA

[13], which improves on standard coordinate methods such as SDCA [24] (of which parallel

versions exist [20], [17]), and present theoretical certificates on parallelization efficiency of this

algorithm along with analysis of special matrix classes. These analyses hint to better theoretical

and practical than parallel coordinate descent method (PCDM) [20].

We apply the algorithm to general quadratic problems that arise in finite differences, and

further we focus on big data application in machine learning, namely, Empirical Risk Minimiza-

tion (ERM)

min
w∈Rd

[

P (w) =
1

n

n
∑

i=1

φi(a
⊤
i w) + λg(w)

]

, (1.1)

which fits many of the statistical estimation models such as Ridge Regression. We present

modified PSN for this type of problems that track dual and primal variables and gives ability

to asses duality gap.

1.1. Contributions

The main contribution of this paper is the design of a novel parallel algorithm and its

subsequent novel theoretical analysis. In the case of a smooth objective function, we present

convergence analysis with proofs. The method in its simple serial case reduces to variants of

algorithms introduced in [13] or [24]. For a different parallelization strategy in the case of

convex quadratic optimization, see [21].

We identify parameters of the problem that determine its parallelizability and analyze them

in special cases. To do this, we generalize two classes of quadratic optimization problems

parametrized by one parameter and analytically calculate the convergence rates for them.

This work utilizes the research on sampling analyzed in paper [12], and is contrasted mainly

with another parallel algorithm - parallel coordinate method (PCDM) analyzed in [18]. Fur-

thermore, it generalizes further the class of coordinate methods beyond the generalization of

blocks. In this work, the sampled blocks of the over-approximation are not fixed and can over-

lap. The choice of sampling leading to non-overlapping and fixed blocks has been analyzed

previously in [4, 9] and mainly in [17].

1.2. Notation

Vectors. In this work, we use the convention that vectors in R
n are labeled with lowercase

Latin letters. By e1, e2, . . . en we denote the standard basis vectors in R
n. The ith element of

a vector x ∈ R
n therefore is xi = e⊤i x. The standard Euclidean inner product between vectors

in R
n is given by 〈x, y〉 := x⊤y =

∑n
i=1 xiyi.

Matrices. We use the convention that matrices in R
n×n are labeled with uppercase bold

Latin letters. By I we denote the identity matrix in R
n×n. The diagonal matrix with vector

w ∈ R
n on the diagonal is denoted by D(w). We write M � 0 (resp. M ≻ 0) to indicate that

M is symmetric positive semi-definite (resp. symmetric positive definite). Elements of a matrix

A ∈ R
n×n are denoted in the natural way: Aij := e⊤i Aej .


