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Abstract

We propose a novel numerical scheme for decoupled forward-backward stochastic differ-

ential equations (FBSDEs) in bounded domains, which corresponds to a class of nonlinear

parabolic partial differential equations with Dirichlet boundary conditions. The key idea

is to exploit the regularity of the solution (Yt, Zt) with respect to Xt to avoid direct ap-

proximation of the involved random exit time. Especially, in the one-dimensional case,

we prove that the probability of Xt exiting the domain within ∆t is on the order of

O((∆t)ε exp(−1/(∆t)2ε)), if the distance between the start point X0 and the boundary is

at least on the order of O((∆t)
1
2
−ε) for any fixed ε > 0. Hence, in spatial discretization, we

set the mesh size ∆x ∼ O((∆t)
1
2
−ε), so that all the interior grid points are sufficiently far

from the boundary, which makes the error caused by the exit time decay sub-exponentially

with respect to ∆t. The accuracy of the approximate solution near the boundary can be

guaranteed by means of high-order piecewise polynomial interpolation. Our method is

developed using the implicit Euler scheme and cubic polynomial interpolation, which leads

to an overall first-order convergence rate with respect to ∆t.
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1. Introduction

Let (Ω,F , {Ft}0≤t≤T ,P) for T > 0 be a complete probability space with the filtration

{Ft}0≤t≤T , generated by the m-dimensional standard Brownian motion Wt := (W 1
t , . . . ,W

m
t )>.

We are interested in numerical solution of the following decoupled forward-backward stochastic
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differential equation (FBSDE), defined in (Ω,F , {Ft}0≤t≤T ,P), i.e.,
Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (SDE),

Yt = ϕ(T ∧ τ,XT∧τ ) +

∫ T∧τ

t∧τ
f(s,Xs, Ys, Zs)ds−

∫ T∧τ

t∧τ
ZsdWs, (BSDE),

(1.1)

where τ := inf{t > 0, Xt 6∈ D} is the first exit time of (t,Xt) from a cylindrical domain

[0, T ]×D ⊂ [0,+∞)×Rd for an open piecewise smooth connected setD, and the initial condition

X0 is in the domain D. We assume that P(τ < ∞) = 1. The functions b : [0, T ] × Rd → Rd,
σ : [0, T ] × Rd → Rd×m and f : [0, T ] × Rd × Rq × Rq×m → Rq are referred to as the drift

coefficient, the diffusion coefficient and the generator, respectively. The two stochastic integrals

with respect to Wt are of the Itô type. (Xt, Yt, Zt) : Ω × [0, T ] → Rd × Rq × Rq×m are the

unknowns of the FBSDE in (1.1). A triple (Xt, Yt, Zt) is called an L2-adapted solution of the

FBSDE, if it is Ft-adapted, square integrable, and satisfies (1.1).

Pardoux and Peng [1] first proved the existence and uniqueness of nonlinear backward

stochastic differential equation (BSDEs) with deterministic terminal time, under the assumption

that f is uniformly Lipschitz in Yt and Zt. The well-posedness of FBSDE (1.1) with random

terminal time has been investigated in [2, 3]. It is well known that the FBSDEs of interest

are closely connected to a class of nonlinear partial differential equations (PDEs) [4–7]. This

relationship, also known as the nonlinear Feynman-Kac theory, is the theoretical foundation of

this work. Nonlinear second-order PDEs arise from many fields in science and engineering such

as astrophysics, differential geometry, image processing, mathematical finance, etc. Besides the

need for developing deep and sophisticated analytical methods for analyzing this class of PDEs,

there is an ever increasing demand for efficient and reliable numerical methods for computing

their solutions. One of the disadvantages of existing numerical methods, such as finite element

and finite difference methods, is the complexity and robustness of the involved linear and

nonlinear iterative solvers. Thus, our goal is to develop an accurate and efficient numerical

scheme for the FBSDE in (1.1), and utilize the developed scheme to solve the nonlinear parabolic

PDEs with Dirichlet boundary conditions.

In the literature, not many works have been devoted to numerical approximation of FBSDEs

in bounded domains, but we would like to mention [8–11]. The main issue in solving (1.1) is the

low accuracy of the approximate solution near the Dirichlet boundary due to the involvement

of the exit time τ . Among those works, there are basically two types of techniques to deal with

the exit time. In [10], the approximate exit time, e.g., associated with the discretized forward

SDE, are directly used in numerical schemes, so that the error between the true exit time

and the approximate one enters the global error. This type of methods usually require weaker

assumptions on the coefficients of the FBSDEs, and achieve at most half-order convergence

O((∆t)1/2) even in the weak sense. The second type of methods, e.g., the works [8, 9, 11],

exploit the nonlinear Feynman-Kac formula to construct special numerical schemes for solving

the FBSDEs near the boundary without directly approximating the exit time. Under sufficient

assumptions on the coefficients in (1.1) and the geometry of the domain D, the numerical

schemes proposed in [8] can achieve first-order convergence.

The numerical schemes presented in this paper conceptually belong to the second type; the

main idea is to exploit the smoothness of (Yt, Zt) with respect to Xt to avoid direct approxi-

mation of the exit time τ . Specifically, it is known that the probability P(τ ≤ ∆t), for a small

∆t > 0, decays very fast as the starting point X0 moves away from ∂D towards the center of


