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Abstract

We consider stochastic semi-linear evolution equations which are driven by additive,

spatially correlated, Wiener noise, and in particular consider problems of heat equation

(analytic semigroup) and damped-driven wave equations (bounded semigroup) type. We

discretize these equations by means of a spectral Galerkin projection, and we study the

approximation of the probability distribution of the trajectories: test functions are regular,

but depend on the values of the process on the interval [0, T ].

We introduce a new approach in the context of quantative weak error analysis for

discretization of SPDEs. The weak error is formulated using a deterministic function

(Itô map) of the stochastic convolution found when the nonlinear term is dropped. The

regularity properties of the Itô map are exploited, and in particular second-order Taylor

expansions employed, to transfer the error from spectral approximation of the stochastic

convolution into the weak error of interest.

We prove that the weak rate of convergence is twice the strong rate of convergence in

two situations. First, we assume that the covariance operator commutes with the generator

of the semigroup: the first order term in the weak error expansion cancels out thanks to

an independence property. Second, we remove the commuting assumption, and extend the

previous result, thanks to the analysis of a new error term depending on a commutator.
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1. Introduction

The numerical analysis of stochastic differential equations (SDEs), in both the weak and

strong senses, has been an active area of research over the last three decades [15, 21]. The

analysis of numerical methods for stochastic partial differential equations (SPDEs) has attracted

a lot of attention and in recent years a number of texts have appeared in this field; see for

instance the recent monographs [13, 18, 19]. The aim of this article is to give a simple argument
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allowing to relate the weak order to the strong order of convergence on the space of trajectories

for a class of spatial approximations to SPDEs.

We focus on the following class of semilinear SPDEs, written using the stochastic evolution

equations framework in Hilbert spaces, from [6]:

dX(t) = AX(t)dt+ F (X(t)) dt+ dWQ(t), X(0) = x0. (1.1)

The semi-linear equation (1.1) is driven by an additive Wiener process WQ, where Q is a

covariance operator. The following parabolic, resp. hyperbolic, SPDEs can be written as (1.1),

with appropriate definitions of the coefficients A, F and Q in terms of A, F and Q:

• the semi-linear stochastic heat equation (parabolic case), with X = u,

du(t) = Au(t)dt+ F (u(t)) dt+ dWQ(t), u(0) = u0; (1.2)

• the damped-driven semi-linear wave equation (hyperbolic case), with X = (u, v)
{

du(t) = v(t)dt

dv(t) = −γv(t)dt+Au(t)dt+ F (u(t))dt+ dWQ(t).
(1.3)

These two equations will be the focus of our work. Notation and assumptions on the coefficients

are precised in Section 2 below. For simplicity, in this introductory section, we assume that

F : H → H is of class C2.

The solution X of (1.1) (well-posed under assumptions given below) is a continuous-time

stochastic process taking values in a separable, infinite-dimensional Hilbert space, which we

denote by H . As for deterministic PDE problems, two kinds of discretizations are required in

order to build practical algorithms: a time-discretization, which in the stochastic context is

often a variant of the Euler-Maruyama method, and a space-discretization, which is based on

finite differences, finite elements or spectral approximation. In this article, we only study the

space-discretization error (no time-discretization), using a spectral Galerkin projection, i.e. by

projecting the equation on vector spaces spanned by N eigenvectors of the linear operator A.

Precisely, X is approximated by the solution XN of an equation of the form

dXN (t) = ANXN (t)dt+ FN (XN (t)) dt+ dWQN (t), (1.4)

where the coefficients AN , FN , QN and the initial condition XN (0) are defined using the

orthogonal projection PN ∈ L(H) onto the N -dimensional vector space spanned by e1, . . . , eN ,

where Aen = −λnen, for all n ∈ N, with λn+1 ≥ λn ≥ λ1 > 0.

When looking at rates of convergence for the discretization of SPDEs, the metric one uses to

compare random variables plays an important role. Let Z, resp. (Zn)n∈{1,2,...}, denote a random

variable, respectively a sequence of random variables, defined on a probability space (Ω,FΩ,P),

with values in a Polish space E (separable and complete metric space, with distance denoted

by dE). Strong approximation is a pathwise concept, typically defined through convergence in

the mean-square sense of Zn to Z, i.e. the convergence of the strong error

estrongn =
(

EdE(Z,Zn)
2
)1/2

,

or in an almost sure sense; see [15] for details. Weak approximation corresponds to convergence

in distribution of Zn to Z, which is often encoded in a weak error of the type

eweak
n = sup

ϕ∈C
|Eϕ(Z)− Eϕ(Zn)|,


