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Abstract. Proper positioning of collocation and source points is one of the major is-
sues in the development of the method of fundamental solutions (MFS). In this paper,
two constraints for appropriate determination of the location of collocation and source
points in the MFS for two-dimensional problems are introduced. The first constraint
is introduced to make sure that the solution of the problem has no oscillation between
two adjacent collocation points on the boundary. Imposing the second constraint im-
proves the condition of the generated system of equations. In other words, the sec-
ond constraint reduces the condition number of the MFS system of equations. In this
method, no optimization procedure is carried out. The proposed method is formulat-
ed for the Laplace problem; however, it can be developed for other problems as well.
The accuracy and effectiveness of the proposed method is demonstrated by presenting
several numerical examples. It is shown that boundary conditions with a sharp vari-
ation of the field variable can be well handled by the presented method. Moreover,
it has been found that problems with a concave or re-entrant corner can be efficiently
modelled by the proposed two-constraint method.

AMS subject classifications: 35A08, 65N80, 65K05, 15A12

Key words: Method of fundamental solutions, location of source points, location of collocation
points, location parameter, condition number.

1 Introduction

The method of fundamental solutions (MFS) is a simple boundary mesh-free method,
which has attracted the attention of scientists and engineers, especially over the last two
decades. The MFS has been used for the analysis of various kinds of direct and inverse
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problems; see for example [1–4]. The MFS has a potential to give accurate solutions with
a very high convergence rate [5,6]. Since the MFS is a boundary mesh-free method, it can
be efficiently used for analysis of problems with an unknown or moving boundary [7–9].
Analogous to the boundary element method (BEM), the MFS is based on the knowledge
of a fundamental solution of the problem. However, unlike the BEM, the MFS is an
integration-free method and this is the advantage of the MFS over the BEM. The evalu-
ation of nearly singular [10, 11] or singular integrals [12, 13] in the BEM requires special
techniques, which make the BEM more complicated in comparison with the MFS. Since
the MFS uses fundamental solutions as interpolating basis functions, the governing e-
quations are exactly satisfied in the domain and on its boundary by the solution obtained
from the MFS. Therefore, the MFS has the potential to provide very accurate numerical
solutions simply by satisfying the boundary conditions as accurate as possible. For an ac-
curate satisfaction of boundary conditions in the MFS, one needs to appropriately locate
the collocation points on the physical boundary and source points on a pseudo boundary
outside the problem domain. Proper positioning of collocation and source points is still
one of the major issues in the development of the MFS.

Analysis of a problem via the MFS can be viewed as being equivalent to dealing with
an inverse source problem. When the distance from the source points to the collocation
points is much larger than the distance between the sources, the problem becomes an ill-
posed inverse source problem [14], which results in a corresponding ill-conditioned sys-
tem of equations. It is well known that a special treatment is required for the stable solu-
tion of ill-conditioned system of equations. The Tikhonov regularization method [15,16],
the singular value decomposition (SVD) [17, 18], the damped SVD [19], and smoothing
methods [20] can be used for the treatment of ill-conditioned system of equations. Itera-
tive methods such as the conjugate gradient method [21] can also be used for solving sys-
tem of linear equations. Iterative methods are suitable for large scale problems and can
be used for parallel processing more effectively; however, they need some modifications
and preconditioning techniques for solving ill-conditioned system of equations [22, 23].

In recent years, some researchers have investigated the determination of the location
of the source points in the MFS. Tsai et al. [24] presented a method for locating the sources
in the MFS. They have stated that the best accuracy can be obtained when the sources are
located far from the boundary and the condition number approaches the limit of the
equation solver. They examined their method for different time-independent operators
over several simple domains with smooth boundary conditions. They have suggested
the nonlinear optimization [25] or domain decomposition method [26] for problems with
more complicated domains.

Gorzelaczyk and Koodziej [27] used the MFS to solve several torsion problems with
different configurations of source points. They concluded that the error of the MFS is
lower if the source points are located on a boundary geometrically similar to the physical
boundary than when the source points are located on a circle enclosing the domain of
interest. If the boundary shape and boundary conditions are both smooth, then the MFS
converges rapidly. In these cases, a circle of relatively large radius can be considered as


