# Two Parameter Iteration Methods for Coupled Sylvester Matrix Equations 

Changqing $\mathrm{Lv}^{1,2}$ and Changfeng $\mathrm{Ma}^{1, *}$<br>${ }^{1}$ College of Mathematics and Informatics \& FJKLMAA, Fujian Normal University, Fuzhou, 350117, China.<br>${ }^{2}$ School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, 277160, China.

Received 18 November 2017; Accepted (in revised version) 25 January 2018.

Abstract. We consider two parameter iteration methods for the coupled Sylvester matrix equations

$$
\begin{aligned}
A X+Y B & =E \\
C X+Y D & =F .
\end{aligned}
$$

Having established the convergence of the algorithms, we discuss the choice of optimal parameters. Numerical examples show the efficiency of the methods.

AMS subject classifications: 65F10, 15A24
Key words: Coupled Sylvester matrix equation, parameter iteration method, accelerating algorithm, convergence analysis.

## 1. Introduction

Let $\mathbb{R}^{m \times n}$ denote the set of $m \times n$ real matrices and let $\mathbb{R}^{m}:=\mathbb{R}^{m \times 1}$. We consider the coupled Sylvester matrix equation

$$
\begin{align*}
& A X+Y B=E  \tag{1.1}\\
& C X+Y D=F
\end{align*}
$$

where $A, C \in \mathbb{R}^{m \times m}, B, D \in \mathbb{R}^{n \times n}, E, F \in \mathbb{R}^{m \times n}$ are constant matrices and $X, Y \in \mathbb{R}^{m \times n}$ are unknowns. Such equations find applications in various fields, including system theory [26, 46-48], control theory [39, 51], stability analysis [36], signal and image processing, photogrammetry. Thus in control systems and robust control [2,13], one often encounters the continuous-time Sylvester equation $A X+X B=C$, discrete-time Sylvester equation $A X B^{T}+X=C$ and generalized Sylvester equation $A X B^{T}+C X D^{T}=F$. For the additive

[^0]decomposition of a transfer matrix, Kågström and Dooren [24] proposed an algorithms based on the block-diagonalisation of $\lambda E-A$. Applying the QZ algorithm, they obtained a matrix $S_{A, Z}$ of the form
\[

S_{A, Z}(\lambda)=\left[$$
\begin{array}{ccc}
\lambda E_{11}-A_{11} & \lambda E_{12}-A_{12} & B_{1} \\
0 & \lambda E_{22}-A_{22} & B_{2} \\
-C_{1} & -C_{2} & D
\end{array}
$$\right],
\]

and the block $\lambda E_{12}-A_{12}$ can be eliminated by solving the generalized Sylvester equation

$$
\begin{aligned}
A_{11} R-L A_{22} & =-A_{12}, \\
E_{11} R-L E_{22} & =-E_{12},
\end{aligned}
$$

for unknown matrices $R$ and $L$. Another equation closely related to the matrix Sylvester equations is the second order system

$$
A \ddot{x}(t)+B \dot{x}(t)+C x(t)-D u(t)=0,
$$

which appears in vibration and structural analysis, spacecraft control and robotics [25].
The solvability of matrix equation has been widely studied - cf. Refs. [33-35, 52, 53] and the solution methods include the QR-factoring [13, 15, 31, 44], matrix splitting and gradient method [11, 12, 14, 40, 41], conjugate gradient method [1, 3-10, 17-20, 22, 23, $27,37,38,42,43,45]$. For the matrix equations of the form $A X B+C=E, A X+X B=F$, $A X B+C X D=F, A^{T} X+X A+B^{T} A X=C$, the parameter iteration methods [21,50] can be used and it is the main tool we employ here. Therefore, in Section 2, we recall basic results needed for what follows. A parameter iteration method is described and investigated in Section 3. Section 4 deals with an accelerating algorithm for Eq. (1.1), and numerical examples are discussed in Section 5. Our final summary and conclusions are presented in Section 6.

## 2. Preliminaries

If $A$ is a real matrix then $A^{T}$ refers to the transpose of $A$. For any matrices $A=\left(a_{i j}\right)$ and $B$ we denote by $A \otimes B$ the Kronecker product of $A$ and $B$ - i.e. $A \otimes B:=\left(a_{i j} B\right)$. If $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{m \times n}$, then vec $(X)$ denotes the $m n$ column vector $\left(x_{1}^{T}, x_{2}^{T}, \cdots, x_{n}^{T}\right)^{T}$. Let us now recall a few basic results.

Lemma 2.1 (cf. Zhang [50]). If $X \in \mathbb{R}^{m \times n}, A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{n \times n}$, then
(i) $\operatorname{vec}(A X B)=\left(B^{T} \otimes A\right) \operatorname{vec}(X)$.
(ii) If $\lambda(A)$ and $\lambda(B)$ are, respectively, the spectra of $A$ and $B$, then

$$
\lambda(A \otimes B)=\left\{\lambda_{i} \mu_{j}: \lambda_{i} \in \lambda(A), \quad \mu_{j} \in \lambda(B), \quad i=1,2, \cdots, m, \quad j=1,2, \cdots, n\right\} .
$$


[^0]:    *Corresponding author. Email addresses: macf@fjnu.edu.cn (Changfeng Ma)

