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Abstract. Mass migration of cells (via wave motion) plays an important role in many
biological processes, particularly chemotaxis. We study the existence of travelling
wave solutions for a chemotaxis model on a microscopic scale. The interaction be-
tween nutrients and chemoattractants are considered. Unlike previous approaches,
we allow for diffusion of substrates, degradation of chemoattractants and cell growth
(constant and linear growth rate). We apply asymptotic methods to investigate the
behaviour of the solutions when cells are highly sensitive to extracellular signalling.
Explicit solutions are demonstrated, and their biological implications are presented.
The results presented here extend and generalize known results.
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1 Introduction

Chemotaxis is the process whereby cells direct their motion in response to extracellular
signalling. The earliest recorded observation of chemotaxis of bacteria occurred in the
late 1800s [5, 12, 13, 35]. In his experiment, Adler [1–3] observed the formation of trav-
elling bands of bacteria when he injected a population of cells (E coli) at one end of a
capillary tube containing oxygen and nutrients. Cells consumed nutrients and excreted
a gradient of signal; thereafter moving in response to the signal. As the concentration of
the oxygen was inadequate to oxidise all the nutrients, two sharp bands of cells, visible
to the naked eye, formed. The first band of cells created a gradient in the concentration
of oxygen, while the second band did so for the concentration of nutrients. Both bands
swum towards higher concentrations. Mathematical models have been developed to de-
scribe chemotaxis.
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The continuum Keller-Segel (K-S) model has become the most common way to repre-
sent the chemotactic behaviour on a macroscopic (population-based) point of view. Cell
proliferation was not included in the K-S model, as it occurs in some cases over a longer
timescale than the duration of many in vivo experiments [44]. Keller and Segel [21] shown
that a singularity in the chemotactic coefficient is necessary in order to produce the band
behaviour (travelling wave solutions) under zero cellular growth/death. To check the
validity of the K-S model, Scribner et al. [37] performed numerical simulations and com-
pared their results with Adler’s (1966) experimental results under different initial condi-
tions. They provided some forms of µ(s), χ(s) and k(s), all dependent on a critical attrac-
tant concentration level a, that produced both uniform and non-uniform bands of bac-
teria. Many interesting results (both mathematics and applications) on travelling wave
solutions in chemotaxis have recently been obtained by Wang [45].

From an individual perspective, Patlak [33] was the first to propose a chemotaxis
model. His model portrayed the random walk process of a particle with persistence of
direction, and external bias. In the case where the particles alternatively run (to move
forward) and tumble (probably to change the direction), the velocity jump process de-
rived from the stochastic process is appropriate to describe the motion [32]. In the case
of no interaction between particles, Alt [4] and Othmer et al. [32] derived a model that
employs a transport equation for velocity jump processes as follows:

∂

∂t
p(x,v,t)+v·∇p(x,v,t)=λ

∫

V
T(v,v′)p(x,v′,t)dv′, (1.1)

where p(x,v,t) is the density of particles at position x ∈ Ω⊂RN , moving with velocity
v∈V ⊂RN at time t≥0, λ is the turning rate, and T(v,v′) is the turning kernel standing
for the probability of a velocity jump from v′ to v if a jump occurs. It was assumed in (1.1)
that the choice of the new velocity does not depend on the run length. The intracellular
dynamic of cells was later considered to study the signal transduction and metabolism
effect [43, 47].

Cell growth and death have often been overlooked in many of the mathematical mod-
els of chemotaxis, though they play a biologically significant role in the behaviour of
systems. In fact, Budrene et Berg [9] observed that cell growth is crucial for the prop-
agation of the swarm ring and the formation of new aggregates (bands of cells). They
also observed that E coli cells grow at an approximately constant rate over the concentra-
tion range of succinate 0.5−7mM. Elliott et al. [11] engineered a 3D in vitro novel tumor
model that allowed the proliferation and spreading of E coli cells to invade and interact
with bacterial-tumor cells. The effects of cell growth on the behaviour of the solutions has
also received a mathematical treatment [22, 24–26, 30]. From the population perspective,
Kennedy and Aris [22] found a certain growth function that gave birth to travelling wave
solutions of constant speed. Unlike the Keller and Segel’s [21] results, Lauffenburger et
al. [25] included bacterial growth and death, and assumed that bacteria move by diffu-
sion. They obtained travelling wave solutions (in non in vivo experiments) irrespective of
the chemotactic coefficient. From the cell-based perspective, Franz et al. [16] also consid-


