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Abstract. The finite difference (FD) method is popular in the computational fluid dy-
namics and widely used in various flow simulations. Most of the FD schemes are
developed on the uniform Cartesian grids; however, the use of nonuniform or curvi-
linear grids is inevitable for adapting to the complex configurations and the coordinate
transformation is usually adopted. Therefore the question that whether the character-
istics of the numerical schemes evaluated on the uniform grids can be preserved on the
nonuniform grids arises, which is seldom discussed. Based on the one-dimensional
wave equation, this paper systematically studies the characteristics of the high-order
FD schemes on nonuniform grids, including the order of accuracy, resolution char-
acteristics and the numerical stability. Especially, the Fourier analysis involving the
metrics is presented for the first time and the relation between the resolution of nu-
merical schemes and the stretching ratio of grids is discussed. Analysis shows that for
smooth varying grids, these characteristics can be generally preserved after the coor-
dinate transformation. Numerical tests also validate our conclusions.
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1 Introduction

The FD method is historically old and plays an important role in the computational fluid
dynamics [1]. In recent 20 years, due to the efficiency and simplicity, various high-order
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schemes based on the FD method have been proposed and widely used in direct numer-
ical simulations (DNS), computational aeroacoustics (CAA) and large eddy simulations
(LES), in which the high resolution is needed. At present, the high-order FD method has
been successfully applied in the simulations of incompressible, compressible and hyper-
sonic flows [2–4] and several other practical applications [5, 6].

In the studies of high-order FD method, different discretization techniques for the
spatial derivative are developed. The common one is the explicit scheme which is di-
rectly derived from the Taylor series expansion. For steadiness, the numerical dissipa-
tion should be introduced by different ways, such as using upwind schemes. However,
a shortage of such schemes is that a long stencil is needed to achieve the desired order
of accuracy, which makes the boundary schemes difficult to design [7]. To reduce the
stencil width, the compact scheme becomes another choice. Compact FD schemes with
spectral-like resolution are first systematically studied by Lele [8] and gain a quick de-
velopment. Recently, Rizzetta et al. [5] carried out a high-order compact scheme with
compact filter, which has been demonstrated to produce accurate and stable results in
large eddy simulations. A family of hybrid dissipative compact schemes is proposed by
Deng et al. [9] and suitable for simulations in aeroacoustics. To make compact schemes
possess the shock-capturing capabilities, many efforts have been devoted [10–12], which
were well summarized by Shen and Zha [13]. However, as stated by Tam [14], the Tay-
lor series truncation cannot be used to quantity the wave propagation errors which are
dominant in CAA and this issue results in the development of optimized schemes, where
the order of accuracy is lowered to reduce errors over a range of wavenumbers [15]. One
of the classical optimized schemes is the dispersion-relation-preserving (DRP) scheme
developed by Tam and Webb [16], which is capable to accurately resolve harmonic com-
ponents with few points-per-wavelength [17].

In most cases, the development of the FD schemes is based on the uniform Cartesian
grids. However, in the simulations of practical problems, the use of the nonuniform or
curvilinear grids is inevitable for adapting to the complex configurations. For solving
this issue, some schemes are especially designed. Gamet et al. [18] modified the original
compact scheme to approximate the first derivative on the nonuniform meshes. Cheong
and Lee [19] developed the GODRP finite difference scheme to locally preserve the same
dispersion relation as the original partial differential equations on the nonuniform mesh.
Moreover, Zhong et al. [20,21] used the polynomial interpolation to derive arbitrary high-
order compact schemes on nonuniform grids, which have been adopted for simulations
of hypersonic boundary-layer stability and transition. Although these schemes can be
directly applied on the nonuniform grids, the distribution of grids is still relatively sim-
ple (for example, the grids are only stretched along each direction of the Cartesian grids),
making the schemes difficult to extend to practical conditions. Another method of deal-
ing with the nonuniform or curvilinear grids in the FD schemes is to employ the coordi-
nate transformation (or named Jacobian transformation), which is the most popular way.
Using this method, the original schemes can be applied in the computational space where
the grid is uniform Cartesian one, but as a result, the metrics and Jacobian are involved


