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Abstract. In this paper, we introduce the Hamiltonian boundary value method
(HBVM) to solve nonlinear Hamiltonian PDEs. We use the idea of Fourier pseudospec-
tral method in spatial direction, which leads to the finite-dimensional Hamiltonian
system. The HBVM, which can preserve the Hamiltonian effectively, is applied in time
direction. Then the nonlinear Schrödinger (NLS) equation and the Korteweg-de Vries
(KdV) equation are taken as examples to show the validity of the proposed method.
Numerical results confirm that the proposed method can simulate the propagation and
collision of different solitons well. Meanwhile the corresponding errors in Hamiltonian
and other intrinsic invariants are presented to show the good preservation property of
the proposed method during long-time numerical calculation.
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1 Introduction

In recent years, there exists an increasing emphasis on constructing numerical methods
that can preserve structural properties of the continuous Hamiltonian systems. These
methods are called geometric numerical integrators or structure-preserving numerical
methods in general. Structure-preserving numerical methods originate from the nu-
merical methods for ODEs and have a huge growth in the last decades, such as, sym-
plectic method [1, 2], discrete gradient method [3], average vector field (AVF) [4], the
HBVM [5, 6] and so on. Then people naturally pay more attention to generalising these
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methods to PDEs, meanwhile, keeping geometric properties of original equations. So far,
there are two main branches to preserve structures of Hamiltonian PDEs. The first is the
multi-symplectic method (MSM) [7–11], which can preserve the multi-symplectic struc-
ture of the Hamiltonian system exactly. The second is Hamiltonian-preserving methods
or energy-preserving methods including discrete variational derivative method [12, 13],
continuous stage Runge-Kutta method [14, 15], the AVF [16–18], etc.. At present, it is
widely acknowledged that Hamiltonian-preserving, as intrinsic geometric property, is of
much significance during numerical simulations.

In this paper, we consider Hamiltonian system [16]

∂u

∂t
= J

δH
δu

(1.1)

in the domain Ω=(x,t)∈R×R, where x and t denote space and time variables, respec-
tively. Here, J is a constant linear skew-symmetric operator and the Hamiltonian H is
defined as

H[u]=
∫

Ω
H(x;u,ux,uxx,···)dx

and the variational derivative [16] is given by
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According to the form of (1.1), we have

∂H
∂t

=
δH
δu

∂u

∂t
=

δH
δu

J
δH
δu

=0. (1.2)

Obviously, the Hamiltonian is an invariant. Sometimes, Hamiltonian system can be writ-
ten as

∂u

∂t
=J (u)

δH
δu

, (1.3)

where J (u) is a skew-symmetric operator which depends on the solution u(x,t). It’s
easy to know, similar result can be obtain for the form of (1.3).

The HBVM was first derived for ODEs by Brugnano et al. [5] in 2009. This method
has attracted much attention in recent years because of its remarkable Hamiltonian-
preserving property under appropriate discretization for ODEs. In 2014, Brugnano and
Sun [21] proposed a multiple invariants conserving method for Hamiltonian ODEs. Then
Brugnano [20] generalised the HBVM to solve semilinear wave equation. To the best of
our knowledge, this method has few applications in general nonlinear Hamiltonian PDEs
and comparisons with other Hamiltonian-preserving methods. So we apply this method
for the NLS and KdV equation [24–27] to show its numerical characters.

With this premise, the rest of the paper is arranged as follows. In Section 2, we re-
view the Fourier pseudospectral method [22–24] for space-discretization and transform


