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Abstract. Even though there are various fast methods and preconditioning techniques
available for the simulation of Poisson problems, little work has been done for solv-
ing Poisson’s equation by using the Helmholtz decomposition scheme. To bridge this
issue, we propose a novel efficient algorithm to solve Poisson’s equation in irregular
two dimensional domains for electrostatics through a quasi-Helmholtz decomposition
technique—the loop-tree basis decomposition. It can handle Dirichlet, Neumann or
mixed boundary problems in which the filling media can be homogeneous or inho-
mogeneous. A novel point of this method is to first find the electric flux efficiently by
applying the loop-tree basis functions. Subsequently, the potential is obtained by find-
ing the inverse of the gradient operator. Furthermore, treatments for both Dirichlet
and Neumann boundary conditions are addressed. Finally, the validation and effi-
ciency are illustrated by several numerical examples. Through these simulations, it
is observed that the computational complexity of our proposed method almost scales
as O(N), where N is the triangle patch number of meshes. Consequently, this new
algorithm is a feasible fast Poisson solver.
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1 Introduction

The Poisson’s equation occurs in the analysis and modeling of many scientific and en-
gineering problems. In electrostatics, Poisson’s equation arises when finding the elec-
trostatic potential of an electric field in a region with continuously distributed charges.
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It is often solved in micro- and nano-electronic device physics [1], as well as in elec-
tronic transport and electrochemistry problems in terms of the Poisson-Boltzmann equa-
tion [2]. In fluid dynamics, Poisson’s equations are solved to find the velocity potential in
a steady-state potential flow of an incompressible fluid with internal sources or sinks [3].
Moreover, Poisson’s equation is also encountered in finding the steady-state temperature
in an isotropic body with internal sources [4].

An accurate and efficient solution of Poisson’s equation is critical in various areas.
For example, in design optimization of nano-devices where quantum effects are signif-
icant, a widely used scheme is to solve the coupled Schrödinger-Poisson system self-
consistently [5–9], in which Poisson’s equation is solved repeatedly, and concomitantly
with the Schrödinger’s equation. Consequently, the computational load for solving Pois-
son’s equation is always of concern.

There are two main classes of solvers for linear systems from Poisson’s equation: di-
rect and iterative. One of the direct solvers is the fast Poisson solver based on fast Fourier
transform (FFT) [10]. Indeed, this method is extremely efficient when the solution re-
gions are simple and regular geometries with regular grids, such as rectangular regions,
2-D polar and spherical geometries [11], and spherical shells [12]. Since practical prob-
lems usually involve complex geometries, there have been many research works on seek-
ing alternative methods. The multifrontal method with nested dissection ordering [13]
is the most efficient direct method that can deal with complex geometries. Its key idea
relies on partitioning the domain using a nested hierarchical structure and generating
the LU decomposition from bottom up to minimize fill-ins. Typically, the computational
complexity of the multifrontal method is of O(N1.5) in two dimensions where N is the
dimension of the matrix.

For the other class of solvers, the iterative ones are more favorable when large sys-
tems are solved. This kind of methods often collaborate with acceleration algorithms
or preconditioning techniques. A popular one is the approach based on integral equa-
tion techniques and accelerated by the fast multipole method (FMM) [14–17]. By ex-
panding the system Green’s function using the multipole expansion, this method can
speed up the calculation of long-range interaction. As a result, it can achieve O(N) com-
plexity when the underlying Green’s function is available and amenable to factorization.
Other than the FMM, the Multigrid (MG) method is one of most effective precondition-
ing strategies for iterative Poisson solvers. Since the pioneering work of Achi Brandt
in 1970s [18], the multigrid method has been developed as a powerful tool for various
computational problems. Hence, it spawns a large number of documents on the classic
multigrid method [19–23] or specific aspects of multigrid techniques.

Apart from seeking fast solvers, much research in recent years has focused on the
interface problems with discontinuous coefficients and singularities due to the demand
from many applications. For example, dielectric constants of different components in
metal oxide semiconductor field effect transistors (MOSFETs) vary dramatically, lead-
ing to typical problems with material interfaces. Since Peskin introduced the immersed
boundary method (IBM) [24], a number of strategies have been developed to deal with


