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Abstract. This paper describes an application of the recently developed sparse scheme
of the method of fundamental solutions (MFS) for the simulation of three-dimensional
modified Helmholtz problems. The solution to the given problems is approximated
by a two-step strategy which consists of evaluating the particular solution and the ho-
mogeneous solution. The homogeneous solution is approximated by the traditional
MFS. The original dense system of the MFS formulation is condensed into a sparse
system based on the exponential decay of the fundamental solutions. Hence, the ho-
mogeneous solution can be efficiently obtained. The method of particular solutions
with polyharmonic spline radial basis functions and the localized method of approx-
imate particular solutions in combination with the Gaussian radial basis function are
employed to approximate the particular solution. Three numerical examples includ-
ing a near singular problem are presented to show the simplicity and effectiveness of
this approach.
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1 Introduction

Helmholtz-type equations arise in many science and engineering aspects which are often
used to describe the vibration of a structure, the radiation wave, the acoustic cavity and
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heat conduction problems, just to mention a few [1,2]. Analytical solutions to such prob-
lems are difficult or even impossible to obtain whereby the behaviors of the solutions
can be understood by numerical methods, such as the finite element method (FEM), the
finite difference method (FDM), and the boundary element method (BEM). In spite of
the great success of the FEM, the FDM, and the BEM as accurate and effective numerical
tools for engineering problems, some disadvantages or inconveniences also perplex the
users such as the mesh building especially for three dimensional complex domain prob-
lems, numerical quadrature, and singular and hyper-singular integrals [3, 4]. There is
still a growing interest in developing new advanced numerical methods, such as mesh-
less or mesh reduction methods in which domain or boundary meshes are reduced or
avoided [5–7].

The method of fundamental solutions (MFS) is one of the most powerful meshless
techniques that belongs to the category generally named as boundary-type meshless
methods which has been applied to many engineering problems, such as acoustic, tran-
sient heat conduction, and convection-diffusion problems [8–10]. The MFS is first pro-
posed by Kupradze and Aleksidze [11] which can be classified as the regular BEM. The
key idea of the MFS is to represent the solution by a linear combination of fundamental
solutions with respect to source points located outside the domain to avoid the singu-
larity of fundamental solutions. Then the problem is transformed into determining the
unknown coefficients by requiring approximations to satisfy the given boundary condi-
tions [11, 12]. The MFS has gradually received attentions from science and engineering
to solve non-homogeneous problems and various types of time-dependent problems, as
long as it is coupled with other techniques which can be used to give an approximation
of particular solution, e.g., the method of particular solutions (MPS) [13, 14], the dual
reciprocity method (DRM) [15, 16], and the multiple reciprocity method (MRM) [17, 18].

One of the main drawbacks of the MFS is that the coefficient matrix by the MFS is
often dense and ill-conditioned [19–21]. As a result, the traditional MFS is not feasible for
solving large scale problems. In the past, the domain decomposition method (DDM), the
fast multipole method (FMM), the adaptive cross approximation (ACA), and the matrix
decomposition method (MD) [22–25] have been proposed to alleviate storage and compu-
tational efficiency problems associated with the MFS formulation. Recently, we propose
a new sparse scheme of the MFS by exploiting the exponential decay of the fundamental
solution of the modified Helmholtz equation to compress the original dense matrix in or-
der to give a fast solution of two dimensional modified Helmholtz equations [26]. Later,
the same idea is extended to establish the fast simulation model of diffusion and wave
propagation problems [10].

In this paper, we further extend the idea to give a fast solution of three-dimensional
modified Helmholtz problems. The dense coefficient matrix of the MFS formulation is
converted into an equivalent sparse system based on the exponential decay of fundamen-
tal solutions. As for the particular solution, we have two different strategies, which are,
the global and the local approaches. The traditional MPS with polyharmonic radial basis
functions (RBFs) which can be viewed as the global method is used to find the particular


