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Abstract. ArbiTER (Arbitrary Topology Equation Reader) is a new code for solving
linear eigenvalue problems arising from a broad range of physics and geometry mod-
els. The primary application area envisioned is boundary plasma physics in magnetic
confinement devices; however ArbiTER should be applicable to other science and en-
gineering fields as well. The code permits a variable numbers of dimensions, making
possible application to both fluid and kinetic models. The use of specialized equation
and topology parsers permits a high degree of flexibility in specifying the physics and
geometry.
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1 Introduction

Most modern computational efforts for simulating the edge region of fusion plasmas em-
ploy time advancement to capture the nonlinear and turbulent evolution of the particles
and fields. Over the past several decades, many such studies of boundary turbulence
have been advanced, employing varying degrees of approximation and sophistication.
Some relevant examples are given in Refs. [1-18]. These simulation codes employ either
fluid models, gyrofluid models, or full kinetic simulation using particle-in-cell (PIC) or
Vlasov fluid approaches all of which are implemented in the time domain. The plasma
simulation community needs such tools for theoretical analysis, numerical experimenta-
tion, experimental modeling, and even for the hardware component design.

On the other hand, there is a small but significant class of important edge plasma
problems which are amenable to linear and/or quasilinear analysis of partial integro-
differential equations. These include source-driven problems and eigenvalue problems
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such as those arising in the computation of the growth rates of linear plasma instabilities.
In addition, linear calculations can be used for convergence tests and to study stability
regions in parameter space.

Time-evolution codes can be used for treating such problems, however there are
advantages in using a non time-evolution approach. Indeed, consider a general time-
evolution equation

df(X)/dt=FE(f(%),%,t). (1.1)

In the case where the problem is linear, or can be linearized, the right-hand side can
be represented as a matrix M, i.e.,

df(%)/dt=M(Zt)f(X). (1.2)

Furthermore we are assuming M(x,t)=M(x), with no explicit time dependence. In
this case, for calculation of the linear instabilities in this system, one can calculate the
eigenvalues and eigenmodes of the matrix M by the methods of linear algebra,

Mf=—wf. (1.3)

This approach has advantages over solving the problem by time-evolution: it is po-
tentially much more efficient in terms of CPU-hours needed to solve a problem of given
resolution, and it is capable of finding subdominant modes, i.e. modes with less than the
maximum growth rate. Such modes, even if stable, can lend useful insights into the un-
derlying physics. [19,20] Exploiting the full potential of this approach does require that
a sparse eigensolver is employed; if full matrix techniques are used instead, the com-
putational cost will be orders of magnitude higher. In addition, it is the experience of
the authors that eigenmodes of interest can be found most easily and efficiently using
spectral transform techniques, which are discussed in greater detail in Ref. [29]. Of par-
ticular interest is the Cayley transform, which both greatly decreases convergence times
and allows eigenmodes from nearly any part of eigenvalue space to be selected.

Similarly, one can consider the problem of linear response:

df /dt=M(x)f+3(x,t), (1.4)

where g(x,t) is the forcing term.

Instead of solving by time-evolution, one can take advantage of the linearity and as-
sume a single frequency time-dependence, §(x,t) =5 (x)exp(—iwt). Assuming no secular
terms and assuming the homogeneous part of the solution decays in time, one can solve
for the asymptotic stationary solution by solving the linear system

(iwl+M(x))f=—3(x). (1.5)

Finally, linear codes can also play a role in understanding some classes of nonlinear
problems which are amenable to quasilinear analysis. The appropriate biquadratic forms
can readily be calculated once the linear eigenfunctions are known.



