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Abstract. The Von Mises quasi-linear second order wave equation, which completely
describes an irrotational, compressible and barotropic classical perfect fluid, can be de-
rived from a nontrivial least action principle for the velocity scalar potential only, in
contrast to existing analog formulations which are expressed in terms of coupled den-
sity and velocity fields. In this article, the classical Hamiltonian field theory specifically
associated to such an equation is developed in the polytropic case and numerically
verified in a simplified situation. The existence of such a mathematical structure sug-
gests new theoretical schemes possibly useful for performing numerical integrations of
fluid dynamical equations. Moreover it justifies possible new functional forms for La-
grangian densities and associated Hamiltonian functions in other theoretical classical
physics contexts.
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1 Introduction

The dynamics of non viscous barotropic fluids is characterized by well defined Lagrangian
[1] as well as Hamiltonian classical field theory formulations [1–6] developed in terms of
coupled density and velocity fields. For general rotational configurations moreover, a
geometrically sound scheme exists coupling the so called ’Clebsch velocity potentials’ to
density [1,7]. Such a theory, after linearization, leads to the Analogue Gravity framework
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[8–35] in which part of the fluid linear perturbations behaves kinematically as a massless
scalar field described by a wave equation in a curved space-time, leading to the concept
of analogue systems as the acoustic black holes for instance. For irrotational classical
flows, it has been shown by the authors [36, 37] that the Analogue Geometry formal-
ism is codified at exact level in the Von Mises second order quasi-linear wave equation
(VME) [38]. While in standard fluid dynamics works, density and velocity get coupled
via the continuity and momentum balance equations, the main advantage of the VME is
to be a decoupled quasi-linear second order wave equation for the velocity potential only.
We point out that at linear level the Analogue Gravity formalism applies also to quantum
fluids as described by the Gross-Pitaevskii equation in hydrodynamical form [1]. Unfor-
tunately in this case the analogy with General Relativity works at first order perturbative
level only [8]. It is well known that decoupling of nonlinear partial differential equation
systems is not a trivial task. For instance, in Quantum Physics, the simplest system, i.e.
the free particle described by complex Schroedinger equation for the wave function ψ (of
whom the Gross-Pitaevskii mathematically represents a generalization by including an
additional non linear term ∝ |ψ|2ψ) is:
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where h̄= h/2π with h being the Planck’s constant and ~∇ standing for the gradient op-
erator so that ∇2 is the Laplacian. By using the well known Madelung hydrodynamical
representation [1] for the wave function i.e. ψ= AeiB, the above equation splits into the
two real equations

h̄
∂B

∂t
− h̄2

2m

∇2A

A
+

h̄2

2m
(~∇B)2=0, (1.2a)

2
∂A

∂t
+2

h̄

m
~∇A·~∇B+

h̄A

m
∇2B=0, (1.2b)

which mimic a fluid dynamical problem with mass density ρ = mA2 and velocity ~v =
~∇Φ= h̄

m
~∇B where Φ is a velocity potential. With manipulations we can cast the above

relations into a continuity and a generalized Bernoulli equations:
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including the additional quantum term C = −(h̄2/2m2)(∇2 A/A). Unfortunately this
quantum fluid problem because of the quantity C cannot be simply decoupled into higher
order equations for A and B alone. On the other hand, in the classical perfect irrotational
fluid case described by Euler’s and continuity equations, assuming a barotropic equation
of state which links pressure p and density ρ, the quantum term C in the above relations
is replaced by the enthalpy

∫

dp/ρ and, specifically for a polytropic equation of state,
the decoupling into a quasilinear wave equation for the velocity potential only (the VME


