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Abstract. In this paper we consider PDE-constrained optimization problems which in-
corporate an #H; regularization control term. We focus on a time-dependent PDE, and
consider both distributed and boundary control. The problems we consider include
bound constraints on the state, and we use a Moreau-Yosida penalty function to han-
dle this. We propose Krylov solvers and Schur complement preconditioning strategies
for the different problems and illustrate their performance with numerical examples.
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1 Introduction

As methods for numerically solving partial differential equations (PDEs) become more
accurate and well-understood, some focus has shifted to the development of numerical
methods for optimization problems with PDE constraints: see, e.g., [41,44,69] and the ref-
erences mentioned therein. The canonical PDE-constrained optimization problem takes
a given desired state, i, and finds a state, y, and a control, u, to minimize the functional
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subject to the constraints

Ay=u,
U <u<uy,
Ya<y<yy,

where |- ||y is some norm and R(u) is a regularization functional. We are free to choose
both the norm and the regularization functional here; appropriate choices often depend
on the properties of the underlying application. In the description above .4 denotes a PDE
with appropriate boundary conditions and 8 denotes a scalar regularization parameter.
The focus of this manuscript is regularization based on the H; norm of the control, which
we motivate below.

The simplest choice of R(u) is HMH%Z () Where Q) denotes the domain on which the
PDE is posed. This case has been well-studied in the literature, both from a theoreti-
cal and algorithmic perspective. However, the requirements of real-world problems has
necessitated the application of alternative regularization terms.

One area where there has been much interest is in regularization using L; norms,
see, e.g., the recent articles [12,73]. A related norm is the total variation norm R(u) =
[V, (), has also aroused excitement recently — see e.g. [14, 59] and the references
therein. These L; norms have the benefit that they allow discontinuous controls, which
can be important in certain applications.

For certain applications it is desirable to have a smooth control — for this reason the
H1 semi-norm, R(u) = HVuH%Z Q) has long been studied in the context of parameter-
estimation problems [10, 46, 76], image-deblurring [13,17,48], image reconstruction [49],
and flow control [18, 34], for example. Recently van den Doel, Ascher and Haber [19]
argued that this norm can be a superior choice to its L;-based cousin, total variation, for
problems with particularly noisy data due to the smooth nature of controls which arise.
The test problems in PDE constrained optimization by Haber and Hanson [31], which
were designed to get academics solving problems more in-line with the needs of the real-
world, suggest a regularization functional of the form R(u)=||u Hiz(ﬂ) +a||Vu Hiz(ﬂ) for a
given «. Indeed, this form of regularization is commonly used in the ill-posed and inverse
problem communities. Another example of a field where the standard L, regularization
may not be appropriate is flow control - see, e.g., Gunzburger [28, Chapter 4].

At the heart of many techniques for solving the optimization problem, whether it is
a linear problem or the linearization of a non-linear problem, lies the solution of a linear
system [35,41,44,70]. These systems are very often so-called saddle point matrices [4,23],
which have the form

(1.2)

A:[A BT],

B 0
where A represents the misfit and regularization terms in (1.1) and B represents the

PDE constraint. In the systems we consider in this paper, A is symmetric positive semi-
definite. Such saddle point matrices are invertible if B has full rank and ker(A)Nker(B)=



