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Abstract. This paper presents a parallel algorithm for finding the smallest eigenvalue
of a family of Hankel matrices that are ill-conditioned. Such matrices arise in random
matrix theory and require the use of extremely high precision arithmetic. Surpris-
ingly, we find that a group of commonly-used approaches that are designed for high
efficiency are actually less efficient than a direct approach for this class of matrices.
We then develop a parallel implementation of the algorithm that takes into account
the unusually high cost of individual arithmetic operations. Our approach combines
message passing and shared memory, achieving near-perfect scalability and high tol-
erance for network latency. We are thus able to find solutions for much larger matrices
than previously possible, with the potential for extending this work to systems with
greater levels of parallelism. The contributions of this work are in three areas: deter-
mination that a direct algorithm based on the secant method is more effective when
extreme fixed-point precision is required than are the algorithms more typically used
in parallel floating-point computations; the particular mix of optimizations required
for extreme precision large matrix operations on a modern multi-core cluster, and the
numerical results themselves.
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1 Introduction

In the majority of standard matrix computations, the matrix elements come from mea-
surements of one kind or another. Accurate measurements might have 6-15 significant
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digits. In most cases, computations with double precision arithmetic and the right piv-
oting strategy produce results that are valid to the precision allowed by the initial mea-
surements. The round-off errors introduced during the computation are generally much
smaller than the uncertainty in the original measurements. In this paper, we examine
a class of ill-conditioned matrix problems from random matrix theory, whose elements
come not from measurements but are given by an explicit formula that can be evaluated
to arbitrary precision. Unlike standard problems, to perform accurate computations, the
initial matrix must be evaluated to thousands of digits of precision and the intermediate
computations must be performed with tens of thousands of digits of precision. The ex-
treme precision requires enormous computing resources, and presents novel challenges
and trade offs.

In particular, we study the problem of quickly and efficiently computing the smallest
eigenvalue of a family of ill-conditioned Hankel matrices. Recall that Hankel or moments
matrices, denoted as A, are obtained through (positive) weight functions w(x) supported
on R or subsets of R, and are defined by

Ai,j=µi+j :=
∫ b

a
xi+jw(x)dx, (i, j=0,1,2,···).

These matrices are symmetric, and generate a positive definite quadratic form. For the
problem at hand, we consider

w(x) :=e−xβ

, 0≤ x<∞, β>0,

and the moments are given by the formula:

µj =
∫ ∞

0
xje−xβ

dx=
1

β
Γ
(1+ j

β

)

, (j=0,1,2,···).

We denote the order N Hankel matrix by AN=(Ai,j)0≤i,j≤N−1. Γ(z) is the gamma function
and for complex numbers with a positive real part, gamma is defined by

Γ(z)=
∫ ∞

0
tz−1e−tdt.

The following are two example matrixes for N=4, β=1 and N=4, β= 7
4 :
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.

In the numerical section of [9], Chen and Lawrence used the Jacobi rotation method to
compute the smallest eigenvalues for matrices up to size 300 by 300. For the 300 by


