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Abstract

The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter-

ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on

a fourth order formulation, the transmission eigenvalue problem is discretized by the Mor-

ley element. For the resulting quadratic eigenvalue problem, a recursive integral method

is used to compute real and complex eigenvalues in prescribed regions in the complex

plane. Numerical examples are presented to demonstrate the effectiveness of the proposed

method.
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1. Introduction

The transmission eigenvalue (TE) problem has important applications in inverse scattering

theory and has attracted attention of many researchers recently [3,4,7–9,25]. Although stated

in a simple form, the TE problem is nonstandard and not covered by classical theories.

In this paper, we consider the numerical treatment of the TE problem. The first effort was

given in [8], where three finite element methods (FEM) were proposed. Two iteration methods

were proposed with rigorous convergence analysis in [23]. A mixed method was developed

in [13]. An efficient spectral element based numerical method for the 2D TE problem of radially

stratified media was given in [1]. Recently, a mixed FEM with convergence proof was proposed

to solve the TE problem in [5], and another FEM based method, which transforms the TE

problem into a quadratic eigenvalue problem (QEP), was given in [19]. The related source

problem [10, 26] and other multilevel [12] and multigrid [14] type methods have also been

discussed.

Some non-traditional methods, such as the linear sampling method [24] and the inside-out

duality method [18], have been applied to estimate TEs using scattering data. However, these

methods need to solve a tremendous number of direct problems which make them computa-

tionally prohibitive.

Recently, contour integral based methods have been successfully applied to solve eigenvalue

problems. In [21, 22], a contour integral based method was proposed to compute eigenvalues

of a generalized eigenvalue problem, which lie in a specific region in the complex plane. And

in [2], a contour integral based method was used to solve a nonlinear eigenvalue problem (NEP)
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by formulating the NEP as a linear eigenvalue problem (LEP). In [17], a contour integral based

method was used to compute TEs in a special case when the index of refraction is a constant.

In [11], a novel recursive integral method (RIM) was proposed to solve LEPs. Based on the

eigenprojections of compact operators, regions are searched recursively to test whether there

exist eigenvalues lying inside a specific contour in the complex plane. RIM is effective, robust,

and essentially parallelizable. According to [11], even for the case when the matrix is non-

Hermitian and degenerate, and the information of the spectrum structure is unknown, RIM

still works successfully.

This paper focuses on the extension of RIM to solve NEPs and numerically shows its ro-

bustness. We derive the formulation of RIM for a QEP. Both real and complex eigenvalues are

computed effectively. We discretize the TE problem by the nonconforming Morley element. For

the derived QEP, we employ RIM to find both real and complex eigenvalues within a specific

contour in the complex plane. The TE problem is indeed a fourth order problem [4]. Writing it

in a mixed form as in [11] would require higher regularity of eigenfunctions which in turn leads

to a restriction of the domain, see, e.g., Chp. 4 of [25]. It is known that a similar mixed finite

element approach for the biharmonic equation leads to spurious eigenvalues, which could hap-

pen when the domain is non-convex. Hence it is preferable to discretize the weak formulation

directly and the Morley element is a suitable non-conforming element for triangular meshes.

We only provide a theoretical proof for the Morley element when the refractive index n(x) is a

constant [15], while the proof for more general case when n(x) is non-constant is still open.

This paper is organized as follows. In Section 2, we introduce the TE problem, the reduced

fourth order formulation and the corresponding nonconforming FEM discretization. In Section

3, RIM for the QEP is given. In Section 4, numercial examples are presented to validate the

algorithm. Section 5 is the conclusion part.

2. The Transmission Eigenvalue Problem

2.1. Formulation

For the scattering of time-harmonic acoustic waves by a bounded and simply connected

inhomogeneous medium Ω ⊂ R2, the transmission eigenvalue problem is to find k ∈ C and

φ, ϕ ∈ H2(Ω) such that














∆φ+ k2n(x)φ = 0, in Ω,

∆ϕ+ k2ϕ = 0, in Ω,

φ− ϕ = 0, on ∂Ω,
∂φ
∂ν

− ∂ϕ
∂ν

= 0, on ∂Ω,

(2.1)

where ν is the unit outward normal to the boundary ∂Ω. The index of refraction n(x) is either

n(x) > α0 a.e. in Ω for some constant α0 > 1, or 0 < n(x) < α̃0 a.e. in Ω for some constant

α̃0 < 1. Here we consider the first case. The second one follows similarly. Complex number k

for which there exists a nontrivial solution to (2.1) is called a TE [8].

We define

V := H2
0 (Ω) =

{

u ∈ H2(Ω) : u = 0 and
∂u

∂ν
= 0 on ∂Ω

}

,

and denote (u, v) the L2(Ω) inner product. Introducing a new variable u = φ − ϕ ∈ V and

following the same procedure in [13], one finds that u and k satisfy the fourth order problem

(

∆+ k2n(x)
) 1

n(x)− 1
(∆ + k2)u = 0. (2.2)


