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Abstract

The extended discrete gradient method is an extension of traditional discrete gradient

method, which is specially designed to solve oscillatory Hamiltonian systems efficiently

while preserving their energy exactly. In this paper, based on the extended discrete gradient

method, we present an efficient approach to devising novel schemes for numerically solving

conservative (dissipative) nonlinear wave partial differential equations. The new scheme

can preserve the energy exactly for conservative wave equations. With a minor remedy to

the extended discrete gradient method, the new scheme is applicable to dissipative wave

equations. Moreover, it can preserve the dissipation structure for the dissipative wave

equation as well. Another important property of the new scheme is that it is linearly-fitted,

which guarantees much fast convergence for the fixed-point iteration which is required by

an energy-preserving integrator. The efficiency of the new scheme is demonstrated by some

numerical examples.
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1. Introduction

Numerical schemes that conserve geometric structure have been shown to be useful when

studying the long-time behaviour of dynamical systems. Such schemes are sometimes called

geometric or structure-preserving integrators. The structure includes physical/geometric prop-

erties such as first integrals, symplecticity, symmetries and reversing symmetries, phase-space

volume, Lyapunov functions, foliations. Geometric algorithms have important applications in

many fields, such as fluid dynamics, celestial mechanics, molecular dynamics, quantum physics,

plasma physics, quantum mechanics, and meteorology. We refer the reader to [1–3] for recent
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surveys of this research. It has now become a common practice that the consideration of qual-

itative properties in ordinary and partial differential equations is important when designing

numerical schemes. For ordinary differential equations (ODEs) it is possible to devise rela-

tively general frameworks for structure preservation. This seems somewhat much more difficult

for partial differential equations (PDEs) because PDEs are a huge and motley collection of

problems and each equation under consideration normally requires a dedicated scheme (see,

e.g. [6–10]). Fortunately, many attempts have been made to give a fairly general methodology

to develop geometric schemes for PDEs. For example, in [4], by discretizing the energy of the

PDEs to get an ODE system, then applying the average vector field method to the resulting

system, the authors proposed a systematic procedure to deal with evolutionary PDEs as far as

conservation or dissipation of energy is concerned. Another example is the PDEs that can be

formulated into multi-symplectic form to which, one can apply a scheme which preserves a dis-

crete version of this form (see, e.g. [5], for a review of this approach). Many enery-preserving

or multi-symplectic methods are derived for Hamiltonian PDEs based on the multi-symplectic

formulation (see, e.g., [11–14]).

In recent years, there has been an enormous advance in dealing with the oscillatory systems

q̈ +Mq = f(q), (1.1)

which can be obtained by spatial semi-discretization of wave equations and some useful ap-

proaches to constructing Runge-Kutta-Nyström (RKN)-type integrators have been proposed

(see, e.g. [15–20]). Very recently, taking account of the special structure introduced by the lin-

ear term Mq, Wu et al. [20] formulated a standard form of the multidimensional extended RKN

(ERKN) integrators. The ERKN integrators exhibit the correct qualitative behaviour much bet-

ter than classical RKN methods due to using the special structure of the equation brought by

the linear term Mq. For further work on this topic, we refer the reader to [19, 21, 22]. If f is

the negative gradient of a scalar function V , i.e., f = −∇V , then (1.1) is a multi-frequency

oscillatory Hamiltonian system. In [23], integrating the idea of the discrete gradient method

with the ERKN integrator, the authors presented an extended discrete gradient formula for the

oscillatory Hamiltonian system (1.1).

In this paper, we will propose and investigate an efficient approach to dealing with non-

linear wave PDEs following the line of [4]. Firstly, by approximating the functional whose

negative variational derivative is the right-hand side term of the underlying wave equation,

we semi-discretize the conservative wave equations into a Hamiltonian system of ODEs or the

dissipative wave equations into a dissipative system of ODEs. We then apply the extended

discrete gradient method to the resulting system of ODEs. This process gives a conservative

scheme for conservative wave PDEs and a dissipative scheme for dissipative wave PDEs, and

can be applied to a large scope of wave equations in a systematic way.

The outline of this paper is as follows. The preliminaries are given in Section 2. In Section

3, we recall the extended discrete gradient method, based on which a new dissipative scheme

is proposed for dissipative systems with a damping term. In Section 4, the new numerical

schemes are applied to some conservative/dissipative wave equations to show the efficiency and

robustness in comparison with the existing methods in the literature. The last section focuses

on some conclusions and discussions.


