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Abstract. Moving mesh methods provide an efficient way of solving partial differen-
tial equations for which large, localised variations in the solution necessitate locally
dense spatial meshes. In one-dimension, meshes are typically specified using the ar-
clength mesh density function. This choice is well-justified for piecewise polynomial
interpolants, but it is only justified for spectral methods when model solutions include
localised steep gradients. In this paper, one-dimensional mesh density functions are
presented which are based on a spatially localised measure of the bandwidth of the ap-
proximated model solution. In considering bandwidth, these mesh density functions
are well-justified for spectral methods, but are not strictly tied to the error proper-
ties of any particular spatial interpolant, and are hence widely applicable. The band-
width mesh density functions are illustrated in two ways. First, by applying them to
Chebyshev polynomial approximation of two test functions, and second, through use
in periodic spectral and finite-difference moving mesh methods applied to a number
of model problems in acoustics. These problems include a heterogeneous advection
equation, the viscous Burgers’ equation, and the Korteweg-de Vries equation. Simu-
lation results demonstrate solution convergence rates that are up to an order of mag-
nitude faster using the bandwidth mesh density functions than uniform meshes, and
around three times faster than those using the arclength mesh density function.
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1 Introduction

Many scientific and engineering problems require solutions to partial differential equa-
tions (PDEs). When smooth, these solutions can be efficiently computed using spec-
tral methods. However, often solutions are not equally smooth everywhere. In par-
ticular, they might exhibit features which are tightly localised in space. These include
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shock fronts, narrow pulses, and sharp corners. Such features require dense computa-
tional meshes to accurately resolve. Because spectral methods typically use standardised
meshes, the global mesh density is determined by the sampling requirements of these
localised features. This results in much of the spatial domain being oversampled, in-
creasing computational expense for no accuracy gain. As an example of when this can
become a critical issue, three-dimensional, full-wave simulations of nonlinear medical
ultrasound fields may require many tens of gigabytes of memory to store acoustic field
variables at each time-step due to large, densely sampled simulation domains [16]. These
sampling requirements arise when acoustic nonlinearity causes very high frequencies to
form, often within small regions where the acoustic pressure is particularly high.

Adaptive moving mesh methods can reduce the trade-off between accuracy and com-
putational expense by providing more optimal sampling. They place mesh nodes accord-
ing to a monitor function (sometimes called a mesh density function in one dimension)
that is computed from (and locally dependent on) the calculated solution itself. Moving
mesh methods have traditionally been implemented using finite-difference and finite-
element methods, but spectral implementations offer the opportunity to improve com-
putational efficiency further. Some examples of spectral moving mesh methods include
Fourier [8,9], Galerkin [20], and Chebyshev [22] types. These all used the arclength mon-
itor function, which clusters mesh nodes according to the gradient of the model solu-
tion. For these problems, this choice is justified by physical considerations: the model
solutions in all cases feature localised steep gradients. However, it is not clear why the
arclength monitor function might produce a mesh that is optimal.

One justification for the arclength monitor function is given in [15, §2.4]. Here, it is
shown that derivative-based monitor functions can be derived from interpolation error
bounds for piecewise polynomial interpolants. The arclength monitor function, while
not strictly optimal, can be seen to be very similar to these. But this approach does not
naturally extend to spectral interpolants. An alternative is to directly consider smooth-
ness properties of the approximated solution itself. A notable one-dimensional example
is found in the work of Tee et al. [11, 12, 23, 24]. This approach is designed for solutions
whose analytic continuations contain singularities. It works by first approximating the
analytic continuation, after which a mesh mapping is computed that is parametrised by
the locations of the approximated singularities. These mesh mappings seek to ensure that
a spectral interpolant through the composition of the approximated solution and inverse
mesh mapping converges on the true solution faster than a spectral interpolant through
the solution alone. In [25], a mesh density function is presented which is based on Tee et
al.’s approach. This work demonstrated that a singularity-based mesh density function
was significantly more effective than the arclength mesh density function in reducing the
trade-off between accuracy and computational expense. However, an obvious limitation
of this approach is that it requires the model solution’s analytic continuation to include
singularities (or at least near-singular behaviour).

Recently, Subich [21] demonstrated a more general one-dimensional spectral moving
mesh method, which uses a mesh density function that is given by the envelope of the


