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Abstract

In this survey paper we report on recent developments of the hp-version of the boundary

element method (BEM). As model problems we consider weakly singular and hypersingular

integral equations of the first kind on a planar, open surface. We show that the Galerkin

solutions (computed with the hp-version on geometric meshes) converge exponentially fast

towards the exact solutions of the integral equations. An hp-adaptive algorithm is given

and the implementation of the hp-version BEM is discussed together with the choice of

efficient preconditioners for the ill-conditioned boundary element stiffness matrices. We

also comment on the use of the hp-version BEM for solving Signorini contact problems

in linear elasticity where the contact conditions are enforced only on the discrete set of

Gauss-Lobatto points. Numerical results are presented which underline the theoretical

results.
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1. Exponential Convergence

In this paper we consider the hp-version of the boundary element method (BEM) for Dirich-

let and Neumann screen problems of the Laplacian in IR3\Γ, where Γ is a planar surface piece

with polygonal boundary (for details see also the survey paper [18]). That is, given f or g on

Γ find u ∈ IR3\Γ satisfying

∆u = 0 in IR3\Γ̄,

u = f ∈ H1/2(Γ) (Dirichlet) or
∂u

∂n
= g ∈ H−1/2(Γ)(Neumann),

u = O(|x|−1) as |x| → ∞.

These exterior boundary value problems are called screen problems and can be formulated

equivalently as first kind integral equations with weakly singular and hypersingular kernels,

namely

V ψ(x) :=
1

2π

∫

Γ

1

|x− y|ψ(y) dsy = 2f(x), x ∈ Γ (Dirichlet), (1.1)

Wv(x) := − 1

2π

∂

∂nx

∫

Γ

∂

∂ny

1

|x− y|v(y) dsy = 2g(x), x ∈ Γ (Neumann). (1.2)
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As we have shown in [17] these integral equations have unique solutions ψ ∈ H̃−1/2(Γ), v ∈
H̃1/2(Γ) = H

1/2
00 (Γ).

The Galerkin boundary element schemes for (1.1) and (1.2) read with the L2-duality on Γ

〈·, ·〉: Find ψN ∈ S0
h,p

〈V ψN , φN 〉 = 〈2f, φN 〉, ∀φN ∈ S0
h,p ⊂ H̃−1/2(Γ), (1.3)

and find vN ∈ S1
h,p

〈WvN , wN 〉 = 〈2g, wN 〉, ∀wN ∈ S1
h,p ⊂ H̃1/2(Γ). (1.4)

Since the operators V and W define coercive, continuous bilinear forms we immediately have

quasi-optimality of the Galerkin errors:

‖ψ − ψN‖H̃−1/2(Γ) . dist
(

ψ, S0
h,p(Γ)

)

,

‖v − vN‖H̃1/2(Γ) . dist
(

v, S1
h,p(Γ)

)

.

For the screen problems above these estimates yield only very low order of convergence rate

O(h1/2−εp−1+2ε) with arbitrary ε > 0 (see, e.g., [4, 15, 16]).

The indices h and p in the notation for the trial spaces S0
h,p(Γ) and S1

h,p(Γ) refer to h-

and p-versions, respectively; where in the h-version a more accurate Galerkin solution is ob-

tained by mesh refinement (and the polynomial degree p is kept fixed) whereas in the p-version

a higher accuracy is obtained by increasing the polynomial degree on the same mesh. The

implementation of the h-version is standard. In the p-version BEM for the weakly singular

integral equation we use tensor products of Legendre polynomials on rectangular meshes and

for the hypersingular integral equation we take instead antiderivatives of Legendre polynomials.

On triangular meshes more sophisticated trial functions must be used, as we will show further

below.

If one uses a geometric mesh refinement together with a properly chosen polynomial degree

distribution one obtains even exponentially fast convergence rates for the Galerkin errors of the

above integral equations. We have the following result proven in [1] for d = 2 and in [6, 9, 13]

for d = 3 where d denotes the spatial dimension; i.e., Γ is polygon for d = 2, and Γ is a planar

surface piece if d = 3.

Theorem 1.1. For given piecewise analytic functions f , g in (1.1) and (1.2) and corresponding

Galerkin solutions ψN ∈ S0
h,p−1(Γ

n
σ), vN ∈ S1

h,p(Γ
n
σ) of (1.3) and (1.4) on the geometric mesh

Γn
σ there holds

‖ψ − ψN‖H̃−1/2(Γ)

‖v − vN‖H̃1/2(Γ)

}

≤
{

C exp(−b
√
N), d = 2,

C exp(−b 4
√
N) + O(N−α), d = 3,

with constants C, b > 0 independent of the dimension N of the trial space and arbitrary α > 0.

The local mesh at a right angle corner of Γ is given in Fig. 1.1. The proof of the theorem is

based on analysing the error in countably normed spaces and is based on the following lemma

in [13].

Lemma 1.1. For u ∈ B2
β(Q), 0 < β < 1, there exists a spline uN ∈ S1

h,p(Q
n
σ) and constants

C, b > 0 independent of N , but dependent on σ, µ, β such that

‖u− uN‖H1(Q) ≤ C e−b
4
√

N , (1.5)

with p1 = 1, pk = max
(

2, [µ(k − 1)] + 1
)

(k > 1) for µ > 0.


