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Abstract

A mutually orthogonal system of rational functions on the whole line is introduced.
Some approximation results are established. As an example of applications, a modified
Legendre rational spectral scheme is given for the Dirac equation. Its numerical solu-
tion keeps the same conservation as the genuine solution. This feature not only leads to
reasonable numerical simulation of nonlinear waves, but also simplifies the analysis. The
convergence of the proposed scheme is proved. Numerical results demonstrate the efficiency
of this new approach and coincide with the analysis well.
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1. Introduction

In sciences and engineerings, we often need to solve some problems in unbounded domain
numerically, such as fluid flows in an infinite strip, nonlinear wave equations in quantum me-
chanics and so on. One of numerical methods for such problems is to use spectral approxima-
tions associated with certain orthogonal systems of polynomials in unbounded domains, such
as the Hermite and the Laguerre approximations, see, Funaro and Kavian [8], Maday, Pernaud-
Thomas and Vandeven [23], Guo [9], Guo and Shen [17] and Shen [25]. The next is to reform
the original problems in unbounded domains and then use the Jacobi approximation to resolve
the resulting singular problems in bounded domains numerically, see, Guo [10-13]. Another ef-
fective method is based on rational approximations. Boyd [5,6] and Christov [7] provided some
spectral schemes for linear problems on infinite intervals by using certain mutually orthogonal
systems of rational functions. Recently, Guo, Shen and Wang [18,19], Guo and Wang [21],
and Wang and Guo [27] developed various rational approximations on infinite intervals. The
rational spectral methods have several advantages. For instance, their weights are much weaker
than the Hermite and Laguerre spectral methods and so it is not needed to reform the original
problems usually. Moreover they are easier to be used for exterior problems than the Jacobi
spectral methods. However, the non-uniform weights in the standard rational approximations
may bring in some difficulties in actual computation in some applications. In particular, for
the numerical simulations of hyperbolic systems, non-parabolic dissipative systems and non-
linear waves, such as the Schodinger equation, the Korteweg-de Vries equation and the Dirac
equation etc.. Indeed the solutions of these systems satisfy some conservations which play
important roles in theoretical analysis and numerical simulation. But the appearance of the
non-uniform weights may destroy the corresponding conservations for the numerical solutions.
This fact decreases the exactness of numerical experiments, and makes the numerical analysis
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complicated. To remedy this deficiency, Guo and Shen [17] proposed a modified Legendre ra-
tional approximation on the half line with the weight x(z) = 1. The purpose of this paper is to
develop a modified Legendre rational approximation on the whole line and its applications to
numerical solutions of nonlinear wave equations. In this case, the numerical solutions keep the
same conservations as in continuous cases. Meanwhile, the corresponding numerical analysis is
simplified essentially.

This paper is organized as follows. In the next section, we introduce a mutually orthogonal
system of rational functions on the whole line with the weight x(z) = 1, and discuss its basic
properties. We also recall some basic results on the Jacobi approximation, which will be used
in the sequel. Then we study the modified Legendre rational approximation in Section 3, and
the corresponding interpolation approximation in Section 4. Some approximation results are
established, which form the mathematical foundation of the modified Legendre rational spectral
method on the whole line. Section 5 is for some applications of this new approach. We take the
Dirac equation on the whole line as an example to show how to use this method for nonlinear
wave equations. The convergence of the proposed scheme is proved. Some numerical results
are presented in the final section, which demonstrate the efficiency of this new approach, and
coincide with the analysis well. It is easy to generalize the results of this paper to other nonlinear
problems in multiple-dimensions.

2. Modified Legendre Rational Functions and Some Basic Results on
Jacobi Approximation

2.1. Modified Legendre Rational Functions

Let A = {z| —oo <z < o0} and x(x) be certain weight function in the usual sense. Denote
by (u,v)y and |[v]|, the inner product and the norm of the weighted space L2 (A) respectively,
ie.,

1
(w,v)y = /Au(a:)v(a:)x(a:)da:, [lv]ly = (v,v)%.
Further let 0 v(x) = %v(m), etc.. For any non-negative integer m,
_ k 2
H"(A) ={v | 0;v € Ly(A),0 <k <mj}.

The inner product, the semi-norm and the norm of H (A) are given by

m

(U V)mx = Z(afu’aglﬁcv)x,
k=0 L
[Vlm,x = 1107 0]lxs  |[V]lm,x = (v,0),x

respectively. For any real r > 0, we define the space Hy (A) with the norm [[v[|,,, by space
interpolation. If x(z) = 1, then we denote H, (A), [v]rx, |[v]|rx, |[v]lx and (u,v), by H"(A), |v];,
[[v]]7, [|v]| and (u,v), respectively. In addition, ||v||ee = [|]|Lo (a)-

Let L;(y) be the Legendre polynomial of degree [,1 = 0,1,2---. They are the eigenfunctions
of the singular Sturm-Liouville problem

and satisfy the following recurrence relations
20+1 l
= — ——L_ > .
Liy1(y) 1 yLi(y) 7 1L 1(y), 1>1, (22)
QI+ 1) Li(y) = 0yLisa(y) — Oy Li1(y), 1 2 1. (2.3)

Besides
L) =1, L-1)= (1, 9L = gl+1), 8,L(-1)= (-1 1(+1).



