ON THE GENERAL ALGEBRAIC INVERSE EIGENVALUE PROBLEMS *

Yu-hai Zhang
(Department of Mathematics, Shandong University, Jinan 250100, China)
(ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

A number of new results on sufficient conditions for the solvability and numerical algorithms of the following general algebraic inverse eigenvalue problem are obtained: Given $n+1$ real $n \times n$ matrices $A=\left(a_{i j}\right), A_{k}=\left(a_{i j}^{(k)}\right)(k=1,2, \ldots, n)$ and n distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, find n real numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that the matrix $A(c)=A+\sum_{k=1}^{n} c_{k} A_{k}$ has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Mathematics subject classification: 15A18, 34A55.
Key words: Linear algebra, Eigenvalue problem, Inverse problem.

1. Introduction

We are interested in solving the following inverse eigenvalue problems:
Problem A(Additive inverse eigenvalue problem). Given an $n \times n$ real matrix $A=\left(a_{i j}\right)$, and n distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, find a real $n \times n$ diagonal matrix $D=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ such that the matrix $A+D$ has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
Problem \mathbf{M} (Multiplicative inverse eigenvalue problem). Given an $n \times n$ real matrix $A=$ $\left(a_{i j}\right)$, and n distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, find a real $n \times n$ diagonal matrix $D=$ $\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ such that the matrix $D A$ has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
Problem \mathbf{G} (General inverse eigenvalue problem). Given $n+1$ real $n \times n$ matrices $A=$ $\left(a_{i j}\right), A_{k}=\left(a_{i j}^{(k)}\right)(k=1,2, \ldots, n)$ and n distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, find n real numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that the matrix $A(c)=A+\sum_{k=1}^{n} c_{k} A_{k}$ has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Evidently Problem A and \mathbf{M} are special cases of Problem \mathbf{G}. The solutions of Problem \mathbf{G} are complicated. A number of results on sufficient conditions for the solvability, stability analysis of solution and numerical algorithms of Problem \mathbf{G} with real symmetric matrices can be found in $[1,3,11,12,14,16,19,20,21,22]$. These results are all obtained by studying the following nonlinear system

$$
\begin{equation*}
\lambda_{i}(A(c))=\lambda_{i}, \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $\lambda_{i}(A(c))$ is the i th eigenvalue of $A(c)$, or

$$
\begin{equation*}
\operatorname{det}\left(A(c)-\lambda_{i} I\right)=0, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

Most numerical algorithms depend heavily on the fact that the eigenvalues of real symmetric matrix are real valued and, hence, can be totally ordered ${ }^{[13]}$. But non-symmetric matrices have not the fact. Less results on non-symmetric problems can be found. In this paper, we

[^0]use another approach to investigate Problem G. The main idea is to treat Problem G as the following equivalent problem.
\[

$$
\begin{equation*}
A(c) T=T \Lambda \tag{3}
\end{equation*}
$$

\]

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and T is a non-singular matrix. We see that the columns of T are the eigenvectors of $A(c)$. (3) is equivalent to a polynomial system(see Section 2). It is not necessary to consider ordering eigenvalues to solve the polynomial system.

In Section 2 it is proved that problem \mathbf{G} is equivalent to a polynomial system. In Section 3 by studying the system with the help of Brouwer's fixed point theorem we obtain some new sufficient conditions on the solvability, which improve the results in[1,3,5,8,9]. In Section 4, we propose a linearly convergent iterative algorithm and a quadratically convergent iterative algorithm. Several examples are given in this paper.

Throughout this paper we use the following notation. Let $R^{n \times n}$ be the set of all $n \times n$ real matrices. $R^{n}=R^{n \times 1}$. Let

$$
h_{i}^{(k)}=\sum_{j=1, \neq i}^{n}\left|a_{i j}^{(k)}\right|, \quad h_{i}=\sum_{k=1}^{n} h_{i}^{(k)}, \quad H=\left(h_{i}^{(k)}\right) \in R^{n \times n} .
$$

Obviously, H is a nonnegative matrix. Let $\rho(H)$ be the spectral radius of H.
For a permutation π of the n items $\{1, \ldots, n\}$, let

$$
\begin{gather*}
s_{i j}=a_{i j}+\sum_{k=1}^{n}\left(\lambda_{\pi(k)}-a_{\pi(k), \pi(k)}\right) a_{i j}^{(k)}, \quad l_{i j}=\left|s_{i j}\right|, \quad i, j=1,2, \ldots, n, i \neq j \tag{4}\\
l_{i}=\sum_{j=1, \neq i}^{n} l_{i j}, \quad i=1,2, \ldots, n \tag{5}
\end{gather*}
$$

2. Equivalent Polynomial System

Without loss of generality we can suppose that $[1,3,8,9] a_{i i}=0(i=1, \ldots, n)$ in Problem A, $a_{i i}=1(i=1, \ldots, n)$ in Problem \mathbf{M}, and $a_{i i}^{(k)}=\delta_{i k}(i, k=1, \ldots, n)$ in Problem G.
Theorem 1. Problem \mathbf{G} has a solution $c_{1}, c_{2}, \ldots, c_{n} \in R$ if and only if there exists a permutation π of the n items $\{1, \ldots, n\}$ such that the following polynomial system

$$
\left\{\begin{array}{l}
\left(\lambda_{\pi(j)}-a_{i i}-c_{i}\right) t_{i j}=\left(a_{i j}+\sum_{k=1}^{n} c_{k} a_{i j}^{(k)}\right)+\sum_{l=1, \neq i, j}^{n}\left(a_{i l}+\sum_{k=1}^{n} c_{k} a_{i l}^{(k)}\right) t_{l j}, \quad i, j=1, \ldots, n, i \neq j \tag{6}\\
\lambda_{\pi(i)}-a_{i i}-c_{i}=\sum_{l=1, \neq i}^{n}\left(a_{i l}+\sum_{k=1}^{n} c_{k} a_{i l}^{(k)}\right) t_{l i}, \quad i=1, \ldots, n
\end{array}\right.
$$

has a solution $c_{i} \in R, t_{i j} \in R(i, j=1, \ldots, n, i \neq j)$.
Proof. Suppose Problem \mathbf{G} has a solution $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{T} \in R^{n}$. Since the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(c)$ are all different , the Jordan canonical form of $A(c)$ is $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, and therefore there exists a nonsingular matrix $S=\left(s_{i j}\right) \in C^{n \times n}$ such that

$$
A(c)=S \Lambda S^{-1}
$$

that is

$$
\begin{equation*}
A(c) S=S \Lambda \tag{7}
\end{equation*}
$$

Noting that $A(c)$ is a real matrix only with real eigenvalues, then the similarity matrix S can be taken to be real. Notice that $S \in R^{n \times n}$ is nonsingular, hence $\operatorname{det} S \neq 0$, then there exists a

[^0]: * Received April 17, 2002.

