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Abstract

In this paper, a new high accuracy numerical method for the thin-film problems of
micron and submicron size ferromagnetic elements is proposed. For the computation of
stray field, we use the finite element method(FEM) by introducing a semi-discrete artificial
boundary condition [1, 2]. In our numerical experiments about the domain patterns and
their movement, we can see that the results are accordant to that of experiments and other
numerical methods. Our method are very convenient to deal with arbitrary shape of thin
films such as a polygon with high accuracy.
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1. Introduction

Micromagnetism of micron and submicron scale patterned thin-film has become an area of
great scientific and technological interest in recent years[3, 4, 5, 6, 7]. Because of the important
applications of ferromagnetic thin-film to magnetic information storage technology and the
potential of the semiconductor microelectronics technology, there has been a rising interest in
studying the efficient numerical methods for the thin-film problems in the world[5, 6, 7].

One can simulate the magnetization processes by combining the classic micromagnetic the-
ory with dynamic descriptions of magnetization orientations. Micromagnetic theory considers
the free energy in the ferromagnetic material, which in general includes the following energy
terms (here we omit the magnetoelastic energy)

1. the magnetic anisotropy energy, which acts as a local constraint on the magnetization
orientation,

2. the exchange energy, which tends to keep adjacent spins parallel,
3. the magnetostatic (or Self-Induced) energy,
4. the magnetic potential energy due to external magnetic fields,

By the simulation of the dynamic process in Micromagnetic modelling, not only we can get the
remanence domain configurations in a ferromagnetic element, but also we can get the transient
pictures that demonstrate how a complex domain structure forms. From the Micromagnetic
Model we know that the complex magnetization domain patterns and the detailed spin struc-
tures within the domain boundaries are the results of minimizing the total free energy. That is,
the different domain patterns correspond to different local energy minima. If an external field
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is applied with sufficient magnitude that the energy minimum disappears, the corresponding
magnetization domain pattern will change, following the dynamic equation until a new energy
minimum is reached.

In this paper, we provide a method which mixed the finite element method and integral
method to get the numerical solution of the ferromagnetic thin-film problem. First, we rewrite
the solution of an initial-boundary problem with the Landau-Lifshitz equation in integral for-
mula, we can reduce the computation of the most singular part of the integral to a Poisson
problem on an infinite domain in two dimensional (2D) [7]. After that, we can design a semi-
discrete artificial boundary condition [1, 2] to get the numerical solution by finite element
method (FEM).

2. Thin-film problem

One class of ferromagnetic thin films that has been studied extensively by micromagnetic
modelling are the magnetic thin films used for data storage in hard-disk drives. In general,
these thin films are a few tens of nanometers thick and less than a micron long. Therefore, we
will focus on the micron and sub-micron size thin-films with tens nanometers thickness in this
paper. Certainly, our method can deal with more general thin-film problems.

First, let’s recall the full micromagnetic model [5, 7, 8]. Counsider a ferromagnetic material
contained in a domain V5 = Q x [—§,d] C R?, where § << diam(2), Q C R? is supposed to
have a piecewise smooth boundary, for example, a polygon (then we can define the out normal
vector on 0} except a finite number of points). As we mentioned, the free-energy functional of
micromagnetics can be written as
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where Feye, Fani, Fsta and E..; represent exchange energy, anisotropy enerqy, static enerqgy,
and external field energy respectively. Here M, is saturation magnetization, m is the normal-
ized magnetization (= the magnetization M/M;), a unit vector field defined on the film V.
Moreover, A (dimension J/m) is the exchange stiffness constant, measures the strength of the
exchange energy relative to that of dipolar interactions, K, (dimension J/m?) is the quality
factor measuring the relative strength of the magnetic anisotropy ¢, hg, is the normalized
stray field, whose norm squared gives the magnetostatic energy density, h,; is the applied
field, which we assume to be uniform.

The effective magnetic field h.¢y at a position inside the ferromagnetic material is defined
by

oE

hepp=—5-- (2.2)

The magnetization orientation follows the Landau-Lifshitz equation[8],

dm

E:—ymxheﬁ—aymx (m x heyy), (2.3)
where 7 is the electron gyromagnetic ratio and « is the damping constant. If we want to get the
domain patterns or observe the movement of the domain walls, we should solve the following
initial-boundary value problem

dm
dt
m(0,z) = my(z) (2.5)

—ym x hepr —aym x (m x hesy) (2.4)



