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Abstract
The widely used locally adaptive Cartesian grid methods involve a series of abruptly
refined interfaces. The numerical dissipation due to these interfaces is studied here for
three-point difference approximations of a hyperbolic equation. It will be shown that if
the wave moves in the fine-to-coarse direction then the dissipation is positive (stabilizing),
and if the wave moves in the coarse-to-fine direction then the dissipation is negative (de-
stabilizing).
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1. Introduction

In the adaptive Cartesian grid method [1, 2, 3, 4, 5, 9, 10, 11, 13, 18, 20, 25], the entire
grid is composed of divided zones (which will be called subgrids for convenience) each having a
uniform mesh size and with abrupt mesh refinement at the interfaces. The adaptive Cartesian
grid method shares some common feature with the multilevel methods originally proposed by
Brandt and then evolved to the well-known multigrid method for convergence acceleration, see,
e.g., [6, 17, 19].

A particular feature of the abrupt refinement method is the existence of multiple refinement
interfaces which are separated by subgrids of uniform mesh size. Little attention has been paid
to the stability and accuracy of the abrupt method with multiple interfaces, though the single
interface problem was addressed long before, see, e.g., [2, 7]. In this paper we will address the
question of mesh refinement induced dissipation, which is closely related to the stability of the
difference approximation. Some good dissipation analysis can be found in [12, 21, 23]. Normally
the influence of the abrupt interfaces is coupled with the treatment of the exterior boundaries.
But in this paper we will ignore the influence of the treatment of the exterior boundaries. This
simplification will be stated throughout the paper in its suitable form whenever needed.

Here we only consider three-point difference equations with conservative treatment every-
where (inside subgrid and at interface). The difference approximations on both smoothly refined
grid and abruptly refined grid, based on the same discretization procedure, are presented in
Section 2. Section 3 is devoted to the study of mesh refinement induced dissipation under the
framework of semidiscrete scheme. In Section 4 we will consider the fully discrete scheme in
order to analyze how the mesh refinement influences the total dissipation. To this end we first
we use an energy method to study the necessary condition for energy decreasing (or stabil-
ity). Then we perform an eigenvalue analysis (including a von Neumann stability analysis for
a particular case) in order to study sufficient stability conditions for the Lax-Wendroff scheme.

The conclusions of this paper are summrized in the following two Theorems.
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Figure 1: Abrupt refinement grid.

Theorem 1.1. For a general semi-discrete three-point difference approximation with uneven
mesh spacing, if the wave moves in the fine-to-coarse direction then the dissipation is positive
(stabilizing) , and if the wave moves in the coarse-to-fine direction then the dissipation is neg-
ative (de-stabilizing). Moreover, the amount of dissipation is insenstive to the subgrid width if
the total refinement degree is fized.

Theorem 1.2. For the fully discrete Laz-Wendroff scheme, the lower bound of the stability
region is increased by mesh refinement, while the upper bound is reduced.

2. Three-point Difference Approximations on Smooth and Abrupt
Refinement Grids

2.1. Smooth Refinement Grid and Abrupt Refinement Grid
On a smoothly refined grid , let h; be the size of mesh [ with 0 <1 < L. Conventionally, if

r= h?_’ - is constant independent of [, then the refinement is said to be geometric. In practice we
may have r = h?il depending on [, but such irregular situations have rarely been investigated
theoretically.

On an abruptly refined grid, as displayed in Fig.1, the entire grid is composed of a certain
number of subgrids with different mesh sizes. Let h; be the mesh size on subgrid G; with
0 <1< L. We assume h; = hor! with r < 1 and that the number of grid points in each subgrid
is constant and equal to p, which we will call the subgrid width. For convenience, let
us define the total refinement degree by rp = hp/hg. For geometrical refinement, the local
refinement degree r = h;y1/h; is related to rp by

1

r=r (2.1)

In this paper we will only consider geometrical refinement. Note that the smooth refinement
method can be considered as a particular case of the abrupt mesh refinement method with p = 1
and r — 1. In deriving the difference equations we also require that the difference equation on
an abrupt grid reduces to that on the smooth refinement grid when p = 1.

For purpose of studying the numerical dissipation, it is sufficient here to consider the fol-
lowing scalar equation:

us +auy, =0 (2.2)

approximated by a three-point difference scheme. In order for the results to be useful for
nonlinear problems, we require the treatment to be conservative. Also, for the comparison to
be meaningful, the difference approximations should be designed from the same discretization
methodology for both of the smooth and abrupt refinement methods so that they each reduce
to the other when the grid is uniform.



