Journal of Computational Mathematics, Vol.21, No.4, 2003, 463—-472.

A SUCCESSIVE LEAST SQUARES METHOD FOR
STRUCTURED TOTAL LEAST SQUARES *V

Plamen Y. Yalamov
(Center of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria)

Jin-yun Yuan
(Departamento de Matemdtica, Universidade Federal do Parand, Centro Politécnico, Caiza Postal
19.081, 81531-990 Curitiba — PR, Brazil)

Abstract

A new method for Total Least Squares (TLS) problems is presented. It differs from
previous approaches and is based on the solution of successive Least Squares problems.
The method is quite suitable for Structured TLS (STLS) problems. We study mostly the
case of Toeplitz matrices in this paper. The numerical tests illustrate that the method
converges to the solution fast for Toeplitz STLS problems. Since the method is designed
for general TLS problems, other structured problems can be treated similarly.
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1. Introduction

Total Least Squares (TLS) problems appear in many engineering applications such as signal
and image processing, systems identification, and systems response prediction. A good survey
of areas of application and computational methods is given in [17].

The TLS problem can be stated as follows:

||E | r||r = min, where (A+ E)z =b+r. (1)

Here A,E € R™*™ (usually m > n), and z € R",b,r € R™. The subscript F' denotes the
Frobenius norm. E and r are called errors in the model.

All the algorithms in [17] are based on the Singular Value Decomposition (SVD) analysis
(see [9, 10]). Other approaches are taken in [3] (general matrices) and [12] (Toeplitz matrices)
where methods for nonlinear equations are used to solve the problem. All these methods are
suitable for general matrices, and do not take into account any structure in the matrix E. Very
often in practice the matrix A has some structure, e. g., Toeplitz, or Hankel [13]. Sometimes
the matrix E requires to have the same structure as A. We will call this problem a Structured
TLS (STLS) problem. For this problem the SVD based methods of [17], and the methods of
[3, 12] do not produce a matrix E with the desired structure.

A different approach is applied in [15] where minimization techniques are used to solve
STLS problems. Toeplitz and sparsity structures are considered as an application. This method
produces a matrix E with a prescribed structure. The method is suitable only for TLS problems
of small size.
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A number of methods for solving large Structured LS (SLS) problems ([2, 4, 5, 6, 7]) mo-
tivates us to establish some method for solving STLS problems by using SLS methods. The
purpose of this paper is to propose such a method for the STLS problem in which the basic
kernel is the solution of a LS problem. In this way the proposed method can be used for solving
large STLS problems. We give a general framework of the method. Then, by a suitable choice
of a parameter, the method is applicable to structured, or unstructured problems (We use the
same idea as in [15]). We prove global convergence for any structure. In the case of Toeplitz
A and E we show also that each iteration step is faster than one step of the method in [15].
While the minimization of the errors in [15] is with respect to the 1, 2, and infinity norms,
here we discuss only the 2-norm. Clearly, this norm is the best choice when LS solutions are
involved. In this paper, the existence of solution of the structured total least squares problem
(1) always assumed. The outline of the paper is as follows. In Section 2 we present the new
method and study its convergence. In Section 3 the implementation for Toeplitz STLS problems
is considered. Finally, numerical experiments are give in Section 4.

2. The LS Method

Since the equation
(A+E)x=b+r (2)

is nonlinear with respect to the unknowns F, x, and r, we assume that the unknowns in a
nonlinear system can be split into two groups, for example, one group for x and another group
for £ and r. With this splitting, if the unknowns in one of the groups are constants the problem
becomes linear with respect to the unknowns from the other group, and vice versa.

In such nonlinear problems we can start with some initial value for one of the groups of
unknowns, and then alternatively compute approximations of the two groups of unknowns by
solving linear problems according to some iteration scheme.

For the TLS problem we suggest the LS solution (9, Az(®) = b + r(©) as an initial value
for z. The same initial value is chosen also in [3, 15]. This choice is natural because the LS
problem is just a special case of the TLS problem, and in many cases z(®) will be close enough
to the solution of the TLS problem.

Let us also note that if z is constant, and E and r are variables then problem (1) can be
rewritten as ‘

Here the matrix X and vector « are chosen in such a way that
Xa=Fx.

"I =min, Az+ Xa=b+r. (3)

2

This choice depends on the structure of the matrix E. We present a few examples:

e F is unstructured. Then we have
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Vec(E) = (611,612,...,eln,egl,em,...,egn,...,eml,emg,...,emn)

e FE is general sparse. Then X and « are also sparse, and their sparsity pattern depends on
the sparsity pattern of E.



