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Abstract

In this paper, a large class of n dimensional orthogonal and biorthognal wavelet filters
(lowpass and highpass) are presented in explicit expression. We also characterize orthog-
onal filters with linear phase in this case. Some examples are also given, including non
separable orhogonal and biorthogonal filters with linear phase.
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1. Introduction

In [1], I. Daubechies constructed orthogonal and biorthogonal wavelet filters in one dimen-
sion which have been proved to be very useful in signal and image processing. But except
some short filters have explicit solution, almost all the orthogonal filters given in Daubechies’
book are numerical results. In some applications, people need filters with high precision, in this
case, one need to compute the filters himself. In this paper, we give a class of n dimensional
orthogonal and biorthogonal wavelet filters in explicit expression. With these parameterized
filters, we can easily realize the adaptive selection of filters in many applications.

Recently, many researchers are working on nonseparable wavelets(see [2], [3], [5], [6] and
the references therein) because of the shortcoming of separable filters pointed out in [2]. Using
the same method in [5], we can construct n dimensional wavelet filters. It is interesting that
among these filters, we can find many nonseparable filters with linear phase, which can not be
obtained by using the tensor product of one dimensional wavelet filters.

Our main results and their proofs are proposed in next section. By using the method
in section II, some examples are given in section III, including one dimension case and two
dimension case with linear phase.

2. Main Results

We will discuss orthogonal in detail first, then using similar method, we give the expression
of biorthogonal filters.

2.1 Orthogonal case
The well known method to construct wavelet is MRA. The definition of n dimensional
orthogonal MRA is as follows.

Definition. A sequence of subspaces {V;};jcz of L*(R") is called a MRA if it satisfies the
following properties:

(. OV ={0}, OV =LXR");

(b). flx)€eV; & f(2x) € Viq, forallj € Z,z € R";

(c).  There exists a function p(x) € Vo such that {¢(z — k) }rezn is an orthonormal basis
Of Vo.
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Remark.
1). if x = (z1,---,zy), then 22 = (2x1, - - -, 222).
2). Z" is the set of all n dimensional integers.
Let {V;} be a n dimensional MRA, then there exists a function m(&)(¢ € R™) such that

¢(28) = m(§)¢(S),
where ¢ is the Fourier transform of ¢, and m is called Symbol Function of the scaling function
©. The orthogonality of {p(z — k) }rez~ implies that m(&) satisfies
> ImE+vm) =1, (2.1)
veEn
where E™ denotes the set of all vertexes of n dimensional unit square box.

The construction of ¢ can be reduced to construct m(§). We want to solve (2.1) in some
general cases. In this paper, we assume that m(¢) is a polynomial of ¥ with the constant term
does not equal to 0.

Let £ = (&1, +,&n). Rewrite m(€) in its polyphase form as

m(©) =3 o f(a?), (2.2)
veE™

where z = e, 2V =2} .. ... o xp =€ k=1,--- n,v= (v, ,v,) € E"
It is easy to see that (2.1) is equivalent to

' 1
> AP = 5 (2.3)
veE™
To solve (2.3), a theorem is needed as follows.
Theorem 1. Suppose that {fe,,exr € E", k=1,---,2"} satisfies (2.3), define
(Feu"')Fezn)T:UD(feu"')fezn)T (2'4)

where U is any real unitary matriz of size 2" x 2", and D = diag(z®,---,z"), E" = {ey, k =
1,---,2"}. Then {F,,v € E"} also satisfy (2.3).
Proof. Since U and D are both unitary matrices, the proof is immediately.

Define
T?L(f) = Z 1‘”F,,(1‘2), (25)
veE™
then m(&) is a trigonometric polynomial which satisfies (2.1).
Denote the set of all real unitary matrices with size 2" x 2" by U, and the set of all 2"
dimensional real unit column vectors by V,,. Define

(f€17"'7f€2n)T = 2_%(®IICV=1U]€DIC)V (26)
where U, € U, V € V,,, Dy, = diag(z*®*,---,z¢"), for k=1,---,N.
Let
Fnn={flf =272 (@0, U D)V, Uy, € Uy, k =1,--- 2"V € V, }. (2.7)

Then we have the following theorem:

Theorem 2. For all f € Fn o, then the set {fe,,ex € E™" k = 1,---,2"} satisfies equation
Proof. The proof is immediately.
Denote Xg = (z°,---,x%").
Define
m(€) = Xp - f(2) (2.5)

where f € Fn p, - is the matrix multiply operator. Then m(&) satisfies (2.1).



