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Abstract
Iterative techniques for solving optimal control systems governed by parabolic varia-
tional inequalities are presented. The techniques we use are based on linear finite elements
method to approximate the state equations and nonlinear conjugate gradient methods to
solve the discrete optimal control problem. Convergence results and numerical experiments
are presented.
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1. Introduction

In the theory of variational inequalities and their approximation by finite elements methods
the dam problem models hold a particular place (see for example [3], [14], and references
therein). Such models are of a great practical interest in the development and management
of water resources. Knowledge of the amount of seepage is essential for water conservation
practice. The main goal of the present paper is to study numerical approximations for the
following optimal control problem (CP):

Find  qmin € Usq C L2(0,T) such that

. ) (1.1)
‘]J(szn) = MvgeU,q ‘]J(q)7 )= ]-7 2> —ey m,
subjected to )
H;_1(t)+aH;—1(t) =q(t), j=1,2,...,m. (1.2)
The cost functionals are defined by
1 dy2 N [t 2 .
Jilq) == 3 [wj(q) — wi]” do dt + 5 [q]*dt, j=1,2,...m, (1.3)
Q 0

where N is a nonnegative real. Let us denote by ¢(t) the control variable, by U, a closed convex
subset in L?(0,T) and by wé(z,t) a given functions in L?(Q;). Also this problem subjected to
the following parabolic system of variational inequalities ( Problem (P)):

w;(t) >0 a.e.,w; € L*(0,T; H*(Dy)), % € L*(0,T; H'(D;)), (thenw; € C°(Q;)),
ow;
v (3—7;,%‘ —w;(t))r2(p;) + a(w;(t), v; —w;(t)) > —(1,v; —w;(t))r2(p;),
V’Uj € LZ(DJ'), a.e., U)j(tjfl) = Qf)jfl, ’LUj(t) S Kj(t), Vj >0 j5=12,..m,
where

K;(t)={v; € HY(D;) :v; =Gj on Ty, j = 1,2, ...,m},
G; are any functions in H%(Q;) such that the value of G on the boundary Ty;, gj, is assumed
to have a zero derivative and G; = g; on 'y, x]t;—1,T[ such that g; >0, j =1,2,...,m,

t<
J 1
gilaj,y,t;) = / [Hj_1 (1) — (y + t; —7)]Tdr + Sl(Hj-1 (1) —y = ),
tj—1
i 1
gi(bj,y,t;) == [Hj(T) = (y + t; — )] Tdr + S [(H;(t7) —y = )1,
tj—1
m¥ = (Jm| +m)
2 b
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and a(u,v) := (Vu, Vv)r2(p,) is the bilinear, coercive form in H'(Dj).

Physically, the above model describes (see [27]) the optimal control evolution system of earth
dams where we consider an unsteady flow, say water, moving through m homogeneous porous
rectangular earth dams. The dams have the following domains D; := {(z,y)|0 < a; < = <
bj, 0 <y <ej, j=1,2,...,m}, respectively, with vertical walls z = a], xr=b;, j=12,...,m.
We suppose that the water levels Hy(t), H,, (t) are given real numbers, Hy(t) > Hp(t) >0 and
H;(t) are the intermediate water levels between jth and (5 + 1)th dams, j =1,2,....,m — 1(
see Figure 1), w;(g) are the weak solutions of the evolution dams problem when the initial data
follows from the stationary dam problem (see [6],[10],[28]) and @;_1 are the solutions of the
stationary dams problem (see [3]). The constant v > 0 is called the retentivity cofficient, the
case v = 0 is related to an incompressible fluid. We will denote by ¢; € [0,7],0 < T' < +o0 the
time intervals during which we want to study the filtration dams, j = 1,2,...,m, t, = 0. Let
Qj:DjX(] 1,t ).7_]-2

Ly = {(=, y) aJ <z <bjy=0}, T[g :=T;—-Ty;.

where I'; are the smooth boundary of D;. Optimal control problems in connection with vari-
ational inequalities contain many difficulties, e.g., [4], [5], [12], [16], [17], [18] and [19] or more
recently [1], [7] and the references therein. The control problem (1.1) — (1.3) is in general a
non-convex and non-differentiable optimization problem, see [18]. It has been proved in ([27])
that by controlling the amount of fluid that may go out of each dam the free boundary in each
dam can be controlled. Also in ([27]) regularizing the problem necessary optimality conditions
were exhibited and obtained convergence results when the regularization parameter tends to
zero. One justification to use these methods for solving variational inequalities numerically
is the fact that inequalities are replaced by equations (see for example [23] and [26] ). For
simplicity we will write w; instead of w;(g). Also we write

gj( )':g]'(a’jayvt')a \V/yEDj,t'E[O T] j:1727---7m (14)
which is continuous functions. This under the assumptions [H;(t)| < C1,j =1,3,5,...,m, we
have |g;] < Cs on the sides z = = b; where C; and Cs are posstive constant. In the sequel
we do not care about the existence of an optimal solution of (1.1)-(1.3): one can refer to [27],
where the above formulations and the following theorems in this section can be found.

Problem (P?). Consider the e-approzimating problem for (P) as follows:
Ve >0, Yo €V;  find the functionswj(q;) such that,

V<68: >+a<w U)—ki(ﬁ(wwi}) :<1,v> a.e, te0,T],

wi(tj—1) =051, wilgj)l,, =9;5(a),

where V; = {v € H'(D;) : v =0 on Fdj}, 95(q) is a regularized function for g;(q), see [17]
for example we can choose gj(q), as an exterior penalized function in H*(D; x (0,T)). We can
prove (iteratively) that this problem has a unique solution in L*(0,T,V;) N H'(0,T,V}) (see
Barbu [{] pp. 160) where V is the dual of Vj. To emphasize the penalization method, therefore
for any v € H'(0,T;V) the metric projection is given by ( see R. Scholz [23])

P(v) :=v—vt, (1.5)
therefore we introduce a penalty function B(v),
B(v) :=v— P(v) =vt, (1.6)
! _ da r
gy = {5 O TEO IO F0 (v0,50) = 557 180Ny 0D

Lemma 1. Let wj be the solutions of (P%), e >0, j=1,2,....,m. Then the estimates
18(w5)lL2(q;) < Ce, B(w;)|lL2(0, 1,11 (D)) < Cez, (1.8)

wE
lwllLee0,7,L2(D;)) + w5l L2(0,7,v) + || ||L2(0TV') <Cllg* ]||L2 07,5} (1))
; i

are hold and C' is independent of €.



