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Abstract. We present a proof of the discrete maximum principle (DMP) for the
1D Poisson equation −u′′= f equipped with mixed Dirichlet-Neumann boundary
conditions. The problem is discretized using finite elements of arbitrary lengths
and polynomial degrees (hp-FEM). We show that the DMP holds on all meshes
with no limitations to the sizes and polynomial degrees of the elements.
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1 Introduction

It is well known that the finite element solutions to elliptic and parabolic PDEs some-
times exhibit behavior which is incompatible with the corresponding maximum prin-
ciples and, consequently, incompatible with the underlying physics. Most frequently
this happens when a finite element mesh contains large dihedral angles, but also in
other situations. Discrete maximum principles (DMP) provide additional restrictions
on finite element meshes under which the maximum principles are preserved on the
discrete level.

Up to our knowledge the first DMP were introduced in the 1960s [16]. In the 1970s
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DMP were used to prove the convergence of finite differences and lowest-order fi-
nite element methods (see, e.g., [3, 4]). Nowadays the DMP play an important role in
computational PDEs by guaranteeing that approximation of physically nonnegative
quantities such as the density, temperature, concentration, or electric charge remains
nonnegative. Due to the difficulty of the topic, current research in the area of DMP al-
most exclusively deals with lowest-order elements (see, e.g., [2,7–10,17,18,20]). How-
ever, in the last decades, significant progress has been made in the development of
the hp-FEM (finite element methods with variable size and polynomial degree of el-
ements) and their applications to challenging large-scale problems in computational
science and engineering (see, e.g., [1,11,12,15]). These methods are substantially more
efficient compared to standard lowest-order schemes, and an increasing demand for
them implies a need for the corresponding generalizations of the DMP.

However, the generalization of the DMP to higher-order approximations is quite
demanding and there only are a few known results in this direction. We mention paper
[21] concerning the high-order collocation method and a negative result [6] showing
that a nonstandard version of DMP is not valid for quadratic and higher-order FEM
in 2D.

It was shown in [14] that the DMP cannot be extended from the lowest-order FEM
to hp-FEM in a straightforward manner, and a weak DMP was introduced. Recently,
a maximum principle for one-dimensional Poisson equation equipped with Dirichlet
boundary conditions and discretized by hp-FEM was presented in [19]. The result
was proved under a mild sufficient condition stating that the length of the longest
element in the mesh must be less than 90% of the length of the entire domain. In
this paper we investigate the case of mixed Neumann-Dirichlet boundary conditions.
using different analytical methods. Interestingly, it turns out that in this case, the DMP
holds true with no restrictions.

In general, the analysis of the DMP for mixed boundary conditions follows the
same steps as the analysis for the Dirichlet conditions presented in [19]. Nevertheless,
the stiffness matrices in both cases differ. Fortunately, even in the case of the mixed
boundary conditions there exists an explicit formula for entries of the inverse stiffness
matrix, see Lemma 4.1. Naturally, this formula differs from the case of the pure Dirich-
let conditions. Consequently, the corresponding discrete Green’s functions differ and,
hence, we had to develop a new proof of its nonnegativity in the case of the mixed
boundary conditions, see Section 5. Interestingly, the same quantity H∗

rel(p), where p
stands for the polynomial degree, plays the crucial role in both cases. However, this
role differs. While in the case of Dirichlet conditions the DMP is satisfied if the relative
length of all elements is at most H∗

rel(p), in the case of mixed conditions it suffices for
the validity of DMP to have H∗

rel(p)≥0.
Furthermore, the nature of the maximum principle for the Dirichlet and for the

mixed boundary conditions differs. In both cases the maximum principle is equivalent
to the conservation of nonnegativity, see Definitions 2.1-2.3. However, in the case of
Dirichlet conditions this equivalence is trivial and in the case of the mixed conditions
the maximum principle implies the conservation of nonnegativity in a nontrivial way.


