
NUMERICAL MATHEMATICS: Theory, Methods and Applications

Numer. Math. Theor. Meth. Appl., Vol. 1, No. 2, pp. 176-197 (2008)

A Parameter-Uniform Finite Difference Method for

a Coupled System of Convection-Diffusion Two-Point

Boundary Value Problems

Eugene O’Riordan1, Jeanne Stynes2 and Martin Stynes3,∗

1 School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9,

Ireland.
2 Department of Computing, Cork Institute of Technology, Cork, Ireland.
3 Department of Mathematics, National University of Ireland, Cork, Ireland.

Received 22 June, 2007; Accepted (in revised version) 20 October, 2007

Abstract. A system of m (≥ 2) linear convection-diffusion two-point boundary value

problems is examined, where the diffusion term in each equation is multiplied by a

small parameter ǫ and the equations are coupled through their convective and reactive

terms via matrices B and A respectively. This system is in general singularly perturbed.

Unlike the case of a single equation, it does not satisfy a conventional maximum princi-

ple. Certain hypotheses are placed on the coupling matrices B and A that ensure exis-

tence and uniqueness of a solution to the system and also permit boundary layers in the

components of this solution at only one endpoint of the domain; these hypotheses can

be regarded as a strong form of diagonal dominance of B. This solution is decomposed

into a sum of regular and layer components. Bounds are established on these compo-

nents and their derivatives to show explicitly their dependence on the small parameter

ǫ. Finally, numerical methods consisting of upwinding on piecewise-uniform Shishkin

meshes are proved to yield numerical solutions that are essentially first-order conver-

gent, uniformly in ǫ, to the true solution in the discrete maximum norm. Numerical

results on Shishkin meshes are presented to support these theoretical bounds.

AMS subject classifications: 65L10, 65L12, 65L20, 65L70

Key words: Singularly perturbed, convection-diffusion, coupled system, piecewise-uniform mesh.

Dedicated to Professor Yucheng Su on the Occasion of His 80th Birthday

1. Introduction

While the numerical analysis of singularly perturbed convection-diffusion problems

has received much attention in recent years [6,12,14], the main focus has been on single

equations of various types—systems of equations appear relatively rarely. Nevertheless
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coupled systems of convection-diffusion equations do appear in many applications, notably

optimal control problems and in certain resistance-capacitor electrical circuits; see [7].

In this paper we consider a system of m ≥ 2 convection-diffusion equations in the un-

known vector function u = (u1,u2, · · · ,um)
T . This system is coupled through its convective

and reactive terms:

Lu := (−ǫu′′ − Bu ′+ Au)(x) = f (x), x ∈ (0,1) (1.1)

and it satisfies boundary conditions u(0) = u(1) = 0. Since the problem is linear there is

no loss in generality in assuming homogeneous boundary conditions. Here A = (ai j) and

B = (bi j) are m× m matrices whose entries are assumed to lie in C3[0,1], and ǫ > 0 is

a small diffusion parameter whose presence makes the problem singularly perturbed. We

assume that f = ( f1, · · · , fm)
T ∈ (C3[0,1])m.

Systems of this type from optimal control problems often have a different diffusion

coefficient ǫi associated with the ith equation for i = 1, · · · , m, but with all ratios ǫi/ǫ j

bounded by a fixed constant [7, p.503]; one can then rescale all equations to the form

(1.1) with affecting the analysis and conclusions of this paper, so our assumption of a

single value ǫ is not a restriction in this case.

Assumption 1.1. In the matrices B = (bi j) and A= (ai j), for i = 1, · · · , m one has

βi := min
x∈[0,1]

bii(x)> 0 (1.2a)

and

aii(x)≥ 0 for x ∈ [0,1]. (1.2b)

Similar assumptions are often made in scalar convection-diffusion equations, where in

particular any sign change or vanishing of the coefficient of the first-derivative term alters

significantly the nature of the solution; see, e.g., [12]. Each component ui of our solution

u will exhibit a boundary layer and (1.2a) enables us to predict that the layer in ui(x) will

be at x = 0.

Further hypotheses will be placed on B in Section 2, but our collective hypotheses are

not strong enough to guarantee that the differential operator of (1.1) satisfies a standard

maximum principle; see, e.g., [11, Example 2.1]. This excludes the most commonly-used

tool in finite difference analysis of singularly perturbed differential equations and forces us

to develop an alternative methodology.

Notation. Throughout the paper C denotes a generic constant that is independent of ǫ

and any mesh, and can take on different values at different points in the argument. Write

‖ · ‖∞ for the norm on L∞[0,1]. Set

‖g‖∞ =max{‖g1‖∞, · · · ,‖gm‖∞}

for any vector-valued function g = (g1, · · · , gm)
T having gi ∈ L∞(0,1) for all i. For each

w ∈W−1,∞ define the norm

‖w‖−1,∞ = inf{‖W‖∞ : W ′ = w}.

We shall also use the usual L1[0,1] norm ‖ · ‖L1
.


