A Parameter-Uniform Finite Difference Method for a Coupled System of Convection-Diffusion Two-Point Boundary Value Problems

Eugene O'Riordan¹, Jeanne Stynes² and Martin Stynes^{3,*}

¹ School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.

² Department of Computing, Cork Institute of Technology, Cork, Ireland.

³ Department of Mathematics, National University of Ireland, Cork, Ireland.

Received 22 June, 2007; Accepted (in revised version) 20 October, 2007

Abstract. A system of $m (\geq 2)$ linear convection-diffusion two-point boundary value problems is examined, where the diffusion term in each equation is multiplied by a small parameter ε and the equations are coupled through their convective and reactive terms via matrices *B* and *A* respectively. This system is in general singularly perturbed. Unlike the case of a single equation, it does not satisfy a conventional maximum principle. Certain hypotheses are placed on the coupling matrices *B* and *A* that ensure existence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain; these hypotheses can be regarded as a strong form of diagonal dominance of *B*. This solution is decomposed into a sum of regular and layer components. Bounds are established on these components and their derivatives to show explicitly their dependence on the small parameter ε . Finally, numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order convergent, uniformly in ε , to the true solution in the discrete maximum norm. Numerical results on Shishkin meshes are presented to support these theoretical bounds.

AMS subject classifications: 65L10, 65L12, 65L20, 65L70 Key words: Singularly perturbed, convection-diffusion, coupled system, piecewise-uniform mesh.

Dedicated to Professor Yucheng Su on the Occasion of His 80th Birthday

1. Introduction

While the numerical analysis of singularly perturbed convection-diffusion problems has received much attention in recent years [6, 12, 14], the main focus has been on single equations of various types—systems of equations appear relatively rarely. Nevertheless

http://www.global-sci.org/nmtma

176

©2008 Global-Science Press

^{*}Corresponding author. *Email addresses:* eugene.oriordan@dcu.ie (E. O'Riordan), jeanne.stynes@cit.ie (J. Stynes), m.stynes@ucc.ie (M. Stynes)

A Strongly Coupled Convection-Diffusion System

coupled systems of convection-diffusion equations do appear in many applications, notably optimal control problems and in certain resistance-capacitor electrical circuits; see [7].

In this paper we consider a system of $m \ge 2$ convection-diffusion equations in the unknown vector function $\mathbf{u} = (u_1, u_2, \dots, u_m)^T$. This system is coupled through its convective and reactive terms:

$$Lu := (-\varepsilon u'' - Bu' + Au)(x) = f(x), \quad x \in (0, 1)$$
(1.1)

and it satisfies boundary conditions u(0) = u(1) = 0. Since the problem is linear there is no loss in generality in assuming homogeneous boundary conditions. Here $A = (a_{ij})$ and $B = (b_{ij})$ are $m \times m$ matrices whose entries are assumed to lie in $C^3[0, 1]$, and $\varepsilon > 0$ is a small diffusion parameter whose presence makes the problem singularly perturbed. We assume that $f = (f_1, \dots, f_m)^T \in (C^3[0, 1])^m$.

Systems of this type from optimal control problems often have a different diffusion coefficient ε_i associated with the *i*th equation for $i = 1, \dots, m$, but with all ratios $\varepsilon_i / \varepsilon_j$ bounded by a fixed constant [7, p.503]; one can then rescale all equations to the form (1.1) with affecting the analysis and conclusions of this paper, so our assumption of a single value ε is not a restriction in this case.

Assumption 1.1. In the matrices $B = (b_{ij})$ and $A = (a_{ij})$, for $i = 1, \dots, m$ one has

$$\beta_i := \min_{x \in [0,1]} b_{ii}(x) > 0 \tag{1.2a}$$

and

$$a_{ii}(x) \ge 0 \quad \text{for } x \in [0, 1].$$
 (1.2b)

Similar assumptions are often made in scalar convection-diffusion equations, where in particular any sign change or vanishing of the coefficient of the first-derivative term alters significantly the nature of the solution; see, e.g., [12]. Each component u_i of our solution u will exhibit a boundary layer and (1.2a) enables us to predict that the layer in $u_i(x)$ will be at x = 0.

Further hypotheses will be placed on *B* in Section 2, but our collective hypotheses are not strong enough to guarantee that the differential operator of (1.1) satisfies a standard maximum principle; see, e.g., [11, Example 2.1]. This excludes the most commonly-used tool in finite difference analysis of singularly perturbed differential equations and forces us to develop an alternative methodology.

Notation. Throughout the paper *C* denotes a generic constant that is independent of ε and any mesh, and can take on different values at different points in the argument. Write $\|\cdot\|_{\infty}$ for the norm on $L_{\infty}[0, 1]$. Set

$$\|\mathbf{g}\|_{\infty} = \max\{\|g_1\|_{\infty}, \cdots, \|g_m\|_{\infty}\}$$

for any vector-valued function $g = (g_1, \dots, g_m)^T$ having $g_i \in L_{\infty}(0, 1)$ for all *i*. For each $w \in W^{-1,\infty}$ define the norm

$$||w||_{-1,\infty} = \inf\{||W||_{\infty} : W' = w\}.$$

We shall also use the usual $L_1[0, 1]$ norm $\|\cdot\|_{L_1}$.