The Jackson Inequality for the Best L^2 -Approximation of Functions on [0, 1] with the Weight x

Jian Li and Yongping Liu*

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.

Received 9 May, 2007; Accepted (in revised version) 28 February, 2008

Abstract. Let $L^2([0,1], x)$ be the space of the real valued, measurable, square summable functions on [0,1] with weight x, and let \mathcal{L}_n be the subspace of $L^2([0,1], x)$ defined by a linear combination of $J_0(\mu_k x)$, where J_0 is the Bessel function of order 0 and $\{\mu_k\}$ is the strictly increasing sequence of all positive zeros of J_0 . For $f \in L^2([0,1], x)$, let $E(f, \mathcal{L}_n)$ be the error of the best $L^2([0,1], x)$, i.e., approximation of f by elements of \mathcal{L}_n . The shift operator of f at point $x \in [0,1]$ with step $t \in [0,1]$ is defined by

$$T(t)f(x) = \frac{1}{\pi} \int_0^{\pi} f\left(\sqrt{x^2 + t^2 - 2xt\cos\theta}\right) d\theta.$$

The differences $(I - T(t))^{r/2}f = \sum_{j=0}^{\infty} (-1)^j {r/2 \choose j} T^j(t) f$ of order $r \in (0, \infty)$ and the $L^2([0,1], x)$ - modulus of continuity $\omega_r(f, \tau) = \sup\{\|(I - T(t))^{r/2}f\| : 0 \le t \le \tau\}$ of order r are defined in the standard way, where $T^0(t) = I$ is the identity operator. In this paper, we establish the sharp Jackson inequality between $E(f, \mathcal{L}_n)$ and $\omega_r(f, \tau)$ for some cases of r and τ . More precisely, we will find the smallest constant $\mathcal{H}_n(\tau, r)$ which depends only on n, r, and τ , such that the inequality $E(f, \mathcal{L}_n) \le \mathcal{H}_n(\tau, r)\omega_r(f, \tau)$ is valid.

AMS subject classifications: 42B25, 47B47, 42B20, 47A30

Key words: Jackson inequality, modulus of continuity, best approximation, Bessel function.

1. Introduction

1.1. Some histories

The Jackson inequalities with the first and higher modulus of continuity in various function spaces of one and several variables have a long history. The *Jackson inequality* usually means the following relation between the value d(f, L, X) of the best approximation of a

http://www.global-sci.org/nmtma

340

©2008 Global-Science Press

^{*}Corresponding author. Email address: ypliu@bnu.edu.cn (Y. Liu)

Jackson Inequality for the Best L^2 -Approximation of Functions

function *f* in a normed function space *X* by elements of a subspace *L* and the structure characterization of the function *f* in terms of some seminorm (or quasi-seminorm) $|\cdot|_X$:

$$d(f, L, X) \le K(L, X) |f|_X \quad \text{for all} \quad f \in X.$$

$$(1.1)$$

The greatest lower bound of the K(L,X) is called the *sharp constant* or *Jackson constant* in Jackson inequality (1.1).

We recall only some fundamental results in Jackson inequalities concerning direct theorems. Firstly, we introduce some necessary notation. Let \mathbb{N} be the set of all positive integers, \mathbb{R} be the set of all real numbers and \mathbb{R}_+ be the set of all positive real numbers. Denote by $C(\mathbb{T})(\mathbb{T} = [-\pi, \pi])$ the space of continuous, 2π -periodic functions $f : \mathbb{R} \to \mathbb{R}$, with the uniform norm $||f||_{C(\mathbb{T})} = \max\{|f(x)| : x \in \mathbb{R}\}$, by $L^2(\mathbb{T})$ the space of real-valued, 2π -periodic, measurable functions which are square summable on \mathbb{T} with the following $L^2(\mathbb{T})$ -norm,

$$\|f\|_{L^{2}(\mathbb{T})} = \left(\frac{1}{2\pi} \int_{\mathbb{T}} |f(x)|^{2} dx\right)^{1/2},$$
(1.2)

by $L^2(\mathbb{R})$ the space of real-valued, measurable, square summable functions in the real line \mathbb{R} with the $L^2(\mathbb{R})$ -norm,

$$||f||_{L^{2}(\mathbb{R})} = \left(\int_{\mathbb{R}} |f(x)|^{2} dx\right)^{1/2},$$

by \mathscr{T}_n the set of all trigonometric polynomials of degree not higher than n, and by W^2_{σ} , $\sigma \ge 0$, the collection of all entire functions of exponential type σ which as functions of a real $x \in \mathbb{R}$ lie in $L^2(\mathbb{R})$.

Denote by *X* a normed space of some functions defined on \mathbb{R} with the norm $\|\cdot\|_X$. For any $r \in \mathbb{N}$, the structure characterization of the function $f \in X$ is the modulus of continuity of order *r* of *f*:

$$\omega_r(f,\delta)_X = \sup\{\|\Delta_t^r f\|_X : t \in \mathbb{R}, |t| \le \delta\}, \quad \delta \ge 0,$$
(1.3)

where

$$\Delta_t^r f(x) = \sum_{j=0}^r (-1)^{r-j} \binom{r}{j} f(x+jt), \qquad (1.4)$$

while $\binom{r}{0} = 1$, $\binom{r}{j} = r(r-1)\cdots(r-j+1)/j!$, $j = 1, 2, \cdots, r$.

In the most cases, the mathematicians consider Jackson inequality (1.1) for the cases $X = C(\mathbb{T}), X = L^2(\mathbb{T})$ or $X = L^2(\mathbb{R})$, and correspondingly $L = \mathcal{T}_n (n \in \mathbb{N})$ or $L = W_{\sigma}^2 (\sigma \in \mathbb{R}_+)$. In 1911, Jackson [15] proved the inequality (1.1) for the case $X = C(\mathbb{T}), L = \mathcal{T}_n$. He obtained that for any function $f \in C(\mathbb{T})$, the quantity $d(f, L, X) = E_n(f)_{C(\mathbb{T})}$ of the best uniform approximation of $f \in C(\mathbb{T})$ by trigonometric polynomials of order (at most) n tends to zero (as $n \to \infty$) not slower than $\omega_1(f, 1/n)_{C(\mathbb{T})}$, which is defined as (1.3) and (1.4) with taking $X = C(\mathbb{T})$ and r = 1. More precisely, the inequality

$$E_n(f)_{C(\mathbb{T})} \leq M_1 \omega_1(f, 1/n)_{C(\mathbb{T})}, \quad f \in C(\mathbb{T}), \quad n \geq 1,$$