# The Jackson Inequality for the Best $L^{2}$-Approximation of Functions on $[0,1]$ with the Weight $x$ 

Jian Li and Yongping Liu*<br>School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.

Received 9 May, 2007; Accepted (in revised version) 28 February, 2008


#### Abstract

Let $L^{2}([0,1], x)$ be the space of the real valued, measurable, square summable functions on $[0,1]$ with weight $x$, and let $\mathscr{L}_{n}$ be the subspace of $L^{2}([0,1], x)$ defined by a linear combination of $J_{0}\left(\mu_{k} x\right)$, where $J_{0}$ is the Bessel function of order 0 and $\left\{\mu_{k}\right\}$ is the strictly increasing sequence of all positive zeros of $J_{0}$. For $f \in L^{2}([0,1], x)$, let $E\left(f, \mathscr{L}_{n}\right)$ be the error of the best $L^{2}([0,1], x)$, i.e., approximation of $f$ by elements of $\mathscr{L}_{n}$. The shift operator of $f$ at point $x \in[0,1]$ with step $t \in[0,1]$ is defined by $$
T(t) f(x)=\frac{1}{\pi} \int_{0}^{\pi} f\left(\sqrt{x^{2}+t^{2}-2 x t \cos \theta}\right) d \theta
$$

The differences $(I-T(t))^{r / 2} f=\sum_{j=0}^{\infty}(-1)^{j}\binom{r / 2}{j} T^{j}(t) f$ of order $r \in(0, \infty)$ and the $L^{2}([0,1], x)-$ modulus of continuity $\omega_{r}(f, \tau)=\sup \left\{\left\|(I-T(t))^{r / 2} f\right\|: 0 \leq t \leq \tau\right\}$ of order $r$ are defined in the standard way, where $T^{0}(t)=I$ is the identity operator. In this paper, we establish the sharp Jackson inequality between $E\left(f, \mathscr{L}_{n}\right)$ and $\omega_{r}(f, \tau)$ for some cases of $r$ and $\tau$. More precisely, we will find the smallest constant $\mathscr{K}_{n}(\tau, r)$ which depends only on $n$, $r$, and $\tau$, such that the inequality $E\left(f, \mathscr{L}_{n}\right) \leq \mathscr{K}_{n}(\tau, r) \omega_{r}(f, \tau)$ is valid.


AMS subject classifications: 42B25, 47B47, 42B20, 47A30
Key words: Jackson inequality, modulus of continuity, best approximation, Bessel function.

## 1. Introduction

### 1.1. Some histories

The Jackson inequalities with the first and higher modulus of continuity in various function spaces of one and several variables have a long history. The Jackson inequality usually means the following relation between the value $d(f, L, X)$ of the best approximation of a

[^0]function $f$ in a normed function space $X$ by elements of a subspace $L$ and the structure characterization of the function $f$ in terms of some seminorm (or quasi-seminorm) $|\cdot|_{X}$ :
\[

$$
\begin{equation*}
d(f, L, X) \leq K(L, X)|f|_{X} \quad \text { for all } \quad f \in X . \tag{1.1}
\end{equation*}
$$

\]

The greatest lower bound of the $K(L, X)$ is called the sharp constant or Jackson constant in Jackson inequality (1.1).

We recall only some fundamental results in Jackson inequalities concerning direct theorems. Firstly, we introduce some necessary notation. Let $\mathbb{N}$ be the set of all positive integers, $\mathbb{R}$ be the set of all real numbers and $\mathbb{R}_{+}$be the set of all positive real numbers. Denote by $C(\mathbb{T})(\mathbb{T}=[-\pi, \pi])$ the space of continuous, $2 \pi$-periodic functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with the uniform norm $\|f\|_{C(\mathbb{T})}=\max \{|f(x)|: x \in \mathbb{R}\}$, by $L^{2}(\mathbb{T})$ the space of real-valued, $2 \pi$-periodic, measurable functions which are square summable on $\mathbb{T}$ with the following $L^{2}(\mathbb{T})$-norm,

$$
\begin{equation*}
\|f\|_{L^{2}(\mathbb{T})}=\left(\frac{1}{2 \pi} \int_{\mathbb{T}}|f(x)|^{2} d x\right)^{1 / 2}, \tag{1.2}
\end{equation*}
$$

by $L^{2}(\mathbb{R})$ the space of real-valued, measurable, square summable functions in the real line $\mathbb{R}$ with the $L^{2}(\mathbb{R})$-norm,

$$
\|f\|_{L^{2}(\mathbb{R})}=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}
$$

by $\mathscr{T}_{n}$ the set of all trigonometric polynomials of degree not higher than $n$, and by $W_{\sigma}^{2}$, $\sigma \geq 0$, the collection of all entire functions of exponential type $\sigma$ which as functions of a real $x \in \mathbb{R}$ lie in $L^{2}(\mathbb{R})$.

Denote by $X$ a normed space of some functions defined on $\mathbb{R}$ with the norm $\|\cdot\|_{X}$. For any $r \in \mathbb{N}$, the structure characterization of the function $f \in X$ is the modulus of continuity of order $r$ of $f$ :

$$
\begin{equation*}
\omega_{r}(f, \delta)_{X}=\sup \left\{\left\|\Delta_{t}^{r} f\right\|_{X}: t \in \mathbb{R},|t| \leq \delta\right\}, \quad \delta \geq 0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{t}^{r} f(x)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} f(x+j t), \tag{1.4}
\end{equation*}
$$

while $\binom{r}{0}=1,\binom{r}{j}=r(r-1) \cdots(r-j+1) / j!, j=1,2, \cdots, r$.
In the most cases, the mathematicians consider Jackson inequality (1.1) for the cases $X=C(\mathbb{T}), X=L^{2}(\mathbb{T})$ or $X=L^{2}(\mathbb{R})$, and correspondingly $L=\mathscr{T}_{n}(n \in \mathbb{N})$ or $L=W_{\sigma}^{2}(\sigma \in$ $\mathbb{R}_{+}$). In 1911, Jackson [15] proved the inequality (1.1) for the case $X=C(\mathbb{T}), L=\mathscr{T}_{n}$. He obtained that for any function $f \in C(\mathbb{T})$, the quantity $d(f, L, X)=E_{n}(f)_{C(\mathbb{T})}$ of the best uniform approximation of $f \in C(\mathbb{T})$ by trigonometric polynomials of order (at most) $n$ tends to zero (as $n \rightarrow \infty$ ) not slower than $\omega_{1}(f, 1 / n)_{C(\mathbb{T})}$, which is defined as (1.3) and (1.4) with taking $X=C(\mathbb{T})$ and $r=1$. More precisely, the inequality

$$
E_{n}(f)_{C(\mathbb{T})} \leq M_{1} \omega_{1}(f, 1 / n)_{C(\mathbb{T})}, \quad f \in C(\mathbb{T}), \quad n \geq 1,
$$


[^0]:    ${ }^{*}$ Corresponding author. Email address: ypliu@bnu.edu.cn (Y. Liu)

