A DIRECT ALGORITHM FOR DISTINGUISHING NONSINGULAR M－MATRIX AND H－MATRIX＊

Li Yaotang（李耀堂）Zhu Yan（朱 艳）

Abstract

A\) direct algorithm is proposed by which one can distinguish whether a ma－ trix is an M－matrix（or H－matrix）or not quickly and effectively．Numerical examples show that it is effective and convincible to distinguish M－matrix（or H－matrix）by using the algorithm．

Key words nonsingular M－matrix，nonsingular H－matrix，direct algorithm．
AMS（2000）subject classifications 15A48

1 Introduction

For many kinds of applications of M－matrices and H－matrices，the problem how to deter－ mine whether a matrix is an M－matrix（or H－matrix）or not arouses many researchers interesting． Recently，some iterative methods have been proposed for distinguishing H－matrices（see［2－5］）． However，these methods have a common drawback，that is，it is not possible to determine the number of steps of iteration，and when A is not an H－matrix，a wasteful computation is necessary． A direct algorithm has been proposed in［6］，but it is only useful when matrices are symmetrical． In this paper，to conquer these drawbacks，we propose a new direct algorithm．

2 A direct algorithm for distinguishing M－matrix

Let $R^{n \times n}$ denote the set of all $n \times n$ real matrices．$A=\left(a_{i j}\right) \in R^{n \times n}$ is said to be an M－matrix if $a_{i j} \leq 0$ ，for $i \neq j$ ，and $A^{-1} \geq 0$ ．

Lemma $1^{[1]}$ Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an M－matrix，then any principle submatrix of A is an M－matrix．

Lemma $2^{[1]}$ Let $A=\left(a_{i j}\right) \in R^{n \times n}$ ，its off－diagonal entries are all non－positive，then A is

[^0]an M-matrix if and only if successive principle minor of $A, D_{K}>0, k=1, \cdots, n$.
From Lemma 2, we can immediately obtain the following lemma.
Lemma 3 Let $A=\left(a_{i j}\right) \in R^{2 \times 2}$, and $a_{i j} \leq 0, i \neq j, a_{i i}>0$, then A is an M-matrix if and only if determinant of $A, \operatorname{det} A>0$.

Theorem 1 Let

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \in R^{n \times n},
$$

where $B_{12} \leq 0, B_{21} \leq 0, B_{11}$ is a 2×2 square matrix and B_{22} is an $(n-2) \times(n-2)$ square matrix, in which their diagonal entries are all positive and off-diagonal entries are all non-positive. Then B is an M-matrix if and only if $\operatorname{det} B_{11}>0$ and $B_{22}-B_{21} B_{11}^{-1} B_{12}$ is an M-matrix.

Proof Necessity: Suppose B is an M-matrix, then
$B^{-1}=\left[\begin{array}{cc}B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \\ -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & \left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1}\end{array}\right] \geq 0$, and B_{11} and B_{22} are M-matrices by Lemma 1. Hence, $\operatorname{det} B_{11}>0$ by Lemma 3 , and $B_{11}^{-1} \geq$ $0,\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0$. For $B_{12} \leq 0, B_{21} \leq 0$, we have $B_{21} B_{11}^{-1} B_{12} \geq 0$, and off-diagonal entries of matrix $B_{22}-B_{21} B_{11}^{-1} B_{12}$ are all non-positive. So, $B_{22}-B_{2} B_{11}^{-1} B_{12}$ is an M-matrix.

Sufficiency: Suppose $\operatorname{det} B_{11}>0$ and $B_{22}-B_{21} B_{11}^{-1} B_{12}$ is an M-matrix, then by Lemma 3, we have that B_{11} is an M-matrix, so

$$
\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0, \quad B_{11}^{-1} \geq 0 .
$$

Therefore

$$
\begin{aligned}
& B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} \geq 0, \\
& -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} \geq 0, \\
& -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0 .
\end{aligned}
$$

From these inequalities, we have
$B^{-1}=\left[\begin{array}{cc}B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \\ -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & \left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1}\end{array}\right] \geq 0$.
Thus B is an M-matrix.
From Theorem 1, we propose the following algorithm A.

Algorithm A

Input The given matrix $B=\left(b_{i j}\right) \in R^{n \times n}$.
Step 1 Set $B=B^{(m)}$, and $m=0$.
Step 2 Partition $B^{(m)}$ into a 2×2 block matrix

$$
B^{(m)}=\left[\begin{array}{ll}
B_{11}^{(m)} & B_{12}^{(m)} \\
B_{21}^{(m)} & B_{22}^{(m)}
\end{array}\right],
$$

[^0]: ＊Foundation item：This work is supported by the Science Foundations of the Education Department of Yunnan Province（03Z169A）and the Science Foundatons of Yunnan University（2003Z013B）．
 Received：Sep．11， 2004.

