A DIRECT ALGORITHM FOR DISTINGUISHING NONSINGULAR *M*-MATRIX AND *H*-MATRIX*

Li Yaotang(李耀堂) Zhu Yan(朱 艳)

Abstract A direct algorithm is proposed by which one can distinguish whether a matrix is an M-matrix (or H-matrix) or not quickly and effectively. Numerical examples show that it is effective and convincible to distinguish M-matrix (or H-matrix) by using the algorithm.

Key words nonsingular M-matrix, nonsingular H-matrix, direct algorithm. AMS(2000)subject classifications 15A48

1 Introduction

For many kinds of applications of M-matrices and H-matrices, the problem how to determine whether a matrix is an M-matrix (or H-matrix) or not arouses many researchers interesting. Recently, some iterative methods have been proposed for distinguishing H-matrices (see [2-5]). However, these methods have a common drawback, that is, it is not possible to determine the number of steps of iteration, and when A is not an H-matrix, a wasteful computation is necessary. A direct algorithm has been proposed in [6], but it is only useful when matrices are symmetrical. In this paper, to conquer these drawbacks, we propose a new direct algorithm.

2 A direct algorithm for distinguishing *M*-matrix

Let $R^{n \times n}$ denote the set of all $n \times n$ real matrices. $A = (a_{ij}) \in R^{n \times n}$ is said to be an *M*-matrix if $a_{ij} \leq 0$, for $i \neq j$, and $A^{-1} \geq 0$.

Lemma 1^[1] Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be an *M*-matrix, then any principle submatrix of *A* is an *M*-matrix.

Lemma 2^[1] Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, its off-diagonal entries are all non-positive, then A is

^{*} Foundation item: This work is supported by the Science Foundations of the Education Department of Yunnan Province (03Z169A) and the Science Foundatons of Yunnan University (2003Z013B). Received: Sep. 11, 2004.

an *M*-matrix if and only if successive principle minor of $A, D_K > 0, k = 1, \dots, n$.

From Lemma 2, we can immediately obtain the following lemma.

Lemma 3 Let $A = (a_{ij}) \in \mathbb{R}^{2 \times 2}$, and $a_{ij} \leq 0, i \neq j, a_{ii} > 0$, then A is an M-matrix if and only if determinant of A, det A > 0.

Theorem 1 Let

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right] \in R^{n \times n}$$

where $B_{12} \leq 0, B_{21} \leq 0, B_{11}$ is a 2×2 square matrix and B_{22} is an $(n-2) \times (n-2)$ square matrix, in which their diagonal entries are all positive and off-diagonal entries are all non-positive. Then B is an M-matrix if and only if det $B_{11} > 0$ and $B_{22} - B_{21}B_{11}^{-1}B_{12}$ is an M-matrix.

Proof Necessity: Suppose B is an M-matrix, then

$$B^{-1} = \begin{bmatrix} B_{11}^{-1} + B_{11}^{-1}B_{12}(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1}B_{21}B_{11}^{-1} & -B_{11}^{-1}B_{12}(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \\ -(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1}B_{21}B_{11}^{-1} & (B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \end{bmatrix} \ge 0,$$

and B_{11} and B_{22} are *M*-matrices by Lemma 1. Hence, det $B_{11} > 0$ by Lemma 3, and $B_{11}^{-1} \ge 0$, $(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \ge 0$. For $B_{12} \le 0, B_{21} \le 0$, we have $B_{21}B_{11}^{-1}B_{12} \ge 0$, and off-diagonal entries of matrix $B_{22} - B_{21}B_{11}^{-1}B_{12}$ are all non-positive. So, $B_{22} - B_2B_{11}^{-1}B_{12}$ is an *M*-matrix.

Sufficiency: Suppose det $B_{11} > 0$ and $B_{22} - B_{21}B_{11}^{-1}B_{12}$ is an *M*-matrix, then by Lemma 3, we have that B_{11} is an *M*-matrix, so

$$(B_{22} - B_{21}B_{11}^{-1}B_{12})^{-1} \ge 0, \qquad B_{11}^{-1} \ge 0.$$

Therefore

$$B_{11}^{-1} + B_{11}^{-1} B_{12} (B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} B_{21} B_{11}^{-1} \ge 0,$$

-(B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} B_{21} B_{11}^{-1} \ge 0,
-B_{11}^{-1} B_{12} (B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} \ge 0.

From these inequalities, we have

$$B^{-1} = \begin{bmatrix} B_{11}^{-1} + B_{11}^{-1} B_{12} (B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} B_{21} B_{11}^{-1} & -B_{11}^{-1} B_{12} (B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} \\ -(B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} B_{21} B_{11}^{-1} & (B_{22} - B_{21} B_{11}^{-1} B_{12})^{-1} \end{bmatrix} \ge 0.$$

Thus B is an M-matrix.

From Theorem 1, we propose the following algorithm A.

Algorithm A

- Input The given matrix $B = (b_{ij}) \in \mathbb{R}^{n \times n}$.
- Step 1 Set $B = B^{(m)}$, and m = 0.

Step 2 Partition $B^{(m)}$ into a 2×2 block matrix

$$B^{(m)} = \begin{bmatrix} B_{11}^{(m)} & B_{12}^{(m)} \\ B_{21}^{(m)} & B_{22}^{(m)} \end{bmatrix},$$